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Motivation

Thermalization in closed quantum systems, Statistical physics?

Exceptions: Integrable models

Gibbs Ensemble, Generalized Gibbs Ensemble

Exact solutions in integrable models
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Setting the stage

Equilibration after global quenches

The models: 1D spin chains given by a local Hamiltonian H

Initial state: |Ψ0〉
Ground state of a local Hamiltonian H0

States prepared according to simple (local) rules
Examples:

|Ψ0〉 = |N〉 = ⊗L/2
k=1|↑↓〉

or
|Ψ0〉 = |D〉 = ⊗L/2

k=1
|↑↓〉 − |↓↑〉√

2
Satisfies the cluster decomposition principle for local operators:

lim
x→∞

〈Ψ0|O(y)O(x + y)|Ψ0〉 = 〈Ψ0|O|Ψ0〉2

Question: If |Ψ(t)〉 = e−iHt |Ψ0〉, then for O local operators

lim
t→∞

〈Ψ(t)|O|Ψ(t)〉 =???
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Thermalization

Time dependence of local observables:

〈O(t)〉 =
∑
n,m

〈Ψ0|n〉〈n|O|m〉〈m|Ψ0〉e−it(Em−En)

Long-time limit, diagonal ensemble:

lim
t→∞

1
t

∫ t

0
dt ′ 〈O(t ′)〉 =

∑
n

|cn|2〈n|O|n〉, cn = 〈Ψ0|n〉

When can we speak about thermalization?
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Thermalization

Canonical ensemble:

〈O〉T = Tr[OρG ] ρG =
e−H/T

Tr e−H/T

Thermalization happens if

lim
t→∞

1
t

∫ t

0
dt ′ 〈O(t ′)〉 = Tr[OρG ]

T is fixed from
〈Ψ0|H|Ψ0〉 = Tr[HρG ]

Find T from the initial state and make predictions!

Only one T for all local observables!
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Mechanism

Eigenstate Thermalisation Hypothesis (ETH): 〈Ψ|O|Ψ〉 = f (E/L)

DE = GE∑
n

|cn|2〈n|O|n〉 ≈ Tr[OρG ]

Unrelated weights, but the same energy density!

CDP:

∆E

L
=

√
〈Ψ0|H2|Ψ0〉 − 〈Ψ0|H|Ψ0〉2

L
∼ 1√

L
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Integrable models

Definition?

Exactly solvable
Bethe Ansatz solvable (XXX Heisenberg spin chain)
Existence of a set of higher charges

XXZ Hamiltonian:

H =
L∑

j=1

(σx
j σ

x
j+1 + σy

j σ
y
j+1 + ∆(σz

j σ
z
j+1 − 1))

Example for a new charge: (at ∆ = 1)

Q3 =
L∑

j=1

σj · (σj+1 × σj+2)
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Quench from the Néel state, ∆ = 3

|Ψ0〉 = |↑↓↑↓ . . . 〉

0 1 2 3

Time
0.4

0.5

0.6

0.7

0.8

0.9

1.0

<
σz i

σz i+
2>

iTEBD simulation, Miklós Werner



GGE

Higher conserved charges: {Qj}, such that

[Qj ,Qk ] = 0

They are extensive: |Qj | ∼ L

H ∈ {Qj}
In a finite chain: number of operators grows polynomially with L.
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GGE

The Generalized Gibbs Ensemble:

〈O〉GGE = Tr[OρGGE ] ρGGE =
e−

∑
j λjQj

Tr e−λjQj

lim
t→∞

1
t

∫ t

0
dt ′ 〈O(t ′)〉 ? Tr[OρGGE ]

M. Rigol et. al., Phys. Rev. Lett. 98, 050405 (2007)

Lagrange multipliers are fixed from

〈Ψ0|Qj |Ψ0〉 = Tr[Qj ρGGE ] j = 1 . . .∞

Find them and make predictions!

Problems: Infinite number of operators, norm, locality, etc.
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Mechanism

Generalized Eigenstate Thermalisation Hypothesis: 〈Ψ|A|Ψ〉 = A({Qj/L})
A. C. Cassidy et. al., Phys. Rev. Lett. 106, 140405 (2011)

DE = GGE∑
n

|cn|2〈n|O|n〉 ≈ Tr

[
e−

∑
j λjQj

Z
O
]

CDP:

∆Qj

L
=

√
〈Ψ0|Q2

j |Ψ0〉 − 〈Ψ0|Qj |Ψ0〉2

L
∼ 1√

L
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XX model

H =
L∑

j=1

(σx
j σ

x
j+1 + σy

j σ
y
j+1)

Solution: Jordan Wigner transformation.

c†j = e iπ
∑j−1

k=1 σ
+
k σ

−
k σ+

j cj = e−iπ
∑j−1

k=1 σ
+
k σ

−
k σ−j

We get the fermionic relations:

{cj , ck} = {c†j , c
†
k} = 0, {c†j , ck} = δj,k

Hamiltonian is written as H =
∑

k εk c̃
†
k c̃k , where

c̃†k =
1√
L

L∑
j=1

e ikjc†j c̃k =
1√
L

L∑
j=1

e−ikjcj



XX model

Charges: Q̃k = ñk = c̃†k c̃k
GGE:

ρGGE =
1
Z
e−

∑
k λ̃k ñk

States in the TDL: Given by density n(k).

GETH: In the TDL the mean values of local operators can be expressed
using n(k) only (Wick theorem).

Example:

〈N1N2〉 =

∫
dk1
2π

∫
dk2
2π

n(k1)n(k2)(1 + cos(k1 − k2))
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XX model

What are the properties of this GGE? ρGGE = 1
Z e
−

∑
k λ̃k ñk

In the thermal case we would have λ̃k = εk
T

Mode dependent temperatures (completely fixed by the initial state)
Measured by experiment! Experimental observation of a generalized
Gibbs ensemble, T. Langen et. al., Science 348 (2015) 207-211
Highly non-local!
Number of parameters grows linearly with the volume: still predictive!

Partial solution to the locality problem: New basis for the charges.

Qj =
∑
k

2 cos(jk)ñk =
L∑

l=1

(c†l cl+j + cc .)

A local GGE?
ρGGE =

1
Z
e−

∑
j λjQj
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Highly non-local!
Number of parameters grows linearly with the volume: still predictive!
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Truncated GGE

ρ
(n)
GGE =

1
Z
e−

∑n
j λjQj

For local observables the limit exists:

〈O〉GGE = lim
n→∞

Tr
[
ρ
(n)
GGEO

]
At every n the ensemble is local, and

lim
t→∞

〈O(t)〉 = lim
n→∞

Tr
[
ρ
(n)
GGEO

]
Role of locality: most local observables converge most quickly

M. Fagotti, F. Essler, Phys. Rev. B 87, 245107 (2013)
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Truncated GGE
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Interacting XXZ model

H =
L∑

j=1

(σx
j σ

x
j+1 + σy

j σ
y
j+1 + cosh(η)(σz

j σ
z
j+1 − 1))

Solvable by the Bethe Ansatz: two-particle reducible scattering

e ip =
sinh(λ+ iη/2)

sinh(λ− iη/2)
S(λ1, λ2) =

sinh(λ1 − λ2 − iη)

sinh(λ1 − λ2 + iη)

Spin waves can form bound states: so-called strings
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XXZ chain

Physical picture: bound states – different particles
In the TDL: densities for the k-strings ρk(λ)

GETH: 〈Ψ|O|Ψ〉 = O({ρk(p)})
M. Mestyán and B.P., J. Stat. Mech. (2014) P09020

GGE can be built using non-local operators whose eigenvalues are the
densities:

ρ̂k(u)|Ψ〉 = ρk(u)|Ψ〉

E. Ilievski et. al, Phys. Rev. B 95, 115128 (2017)

Truncated GGE can be built using local and quasi-local charges with
increasing range
E. Vernier, B.P., arXiv:1703.09516
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XXZ chain

Quasi-local, quasi-conserved operators Qs,j with s, j = 1 . . .∞
Operator norm: |Qs,j |2 ∼ L

Q2,1 ∼
L∑

j=1

[
Sj · Sj+2 +

155
252

Sj · Sj+3 +
64
63

(Sj · Sj+1)(Sj+2 · Sj+3)−

−212
84

(Sj · Sj+2)(Sj+1 · Sj+3)− 44
84

(Sj · Sj+3)(Sj+1 · Sj+2)

]
+ . . .

These charges are important. Without them the GGE does not give good
predictions.

B. Wouters et. al., Phys. Rev. Lett. 113 (2014), 117202
B. P. et. al., Phys. Rev. Lett. 113 (2014) 117203
E. Ilievski et. al., Phys. Rev. Lett. 115 (2015), 157201
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Quench from the Dimer state, ∆ = 3

|Ψ(t = 0)〉 = ⊗L/2
j=1
|↑↓ − ↓↑〉√

2
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Truncated GGE

The correlators 〈σz
1σ

z
3〉 and 〈σz

1σ
z
4〉 after adding n charges from the first n

families
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Thank you for your attention!



HXXZ =
L∑

j=1

{
σx
j σ

x
j+1 + σy

j σ
y
j+1 + ∆(σz

j σ
z
j+1 − 1)

}
Bethe Ansatz equations for ∆ = cosh(η) > 1:

e ipjL =

(
sin(λj + iη/2)

sin(λj − iη/2)

)L

=
∏
k 6=j

sin(λj − λk + iη)

sin(λj − λk − iη)

String solutions:
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Densities of roots: ρr,k(λ)

The number ∆N of k-strings with centers between λ and λ+ ∆λ:
∆N = Lρr,k(λ)∆λ/2π.

Densities of holes: ρh,k(λ).

They satisfy

ρr,k + ρh,k = δk,1d + d ? (ρh,k−1 + ρh,k+1) ,

where

(f ? g)(u) =

∫ π/2

−π/2

dω

2π
f (u − ω)g(ω).

d(u) = 1 + 2
∞∑
n=1

cos(2nu)

cosh(ηn)

. . .
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Generating function for the expectation values:

Gs(λ) =
∞∑
k=1

λk−1

(k − 1)!
〈Qs,k〉 .

[M. Fagotti and F. H. L. Essler, 2013]

The following holds:
d ? (as + ρh,s) = Gs ,

[B. Wouters et. al., 2015]

Therefore:
|Ψ0〉 → Gs(λ) → ρh,s

ρh,s → ρr,s → 〈n|O|n〉
[M. Mestyán and BP., 2014]
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Important quantities:

ηj(λ) ≡ ρh,j(λ)

ρr ,j(λ)
= eεj (λ)

Exact solutions (at least for small j) have been derived in
[B. Wouters et. al., 2014]

[M. Mestyán et. al., 2014]

[L. Piroli, E. Vernier, P. Calabrese, 2016]

[L. Piroli, BP, E. Vernier, to be published soon]
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Y-system: (∆ = cosh(η))

ηj(λ+ iη/2)ηj(λj − iη/2) = (1 + ηj−1(λ))(1 + ηj+1(λ))

Holds for thermal states
Was assumed for two-site product states
Does NOT hold for quenches from certain 4-site product states, such as

|Ψ0〉 =

L/4∏
j=1

|↑↑↓↓〉

[L. Piroli, E. Vernier, P. Calabrese, 2016]

Is related to the structure of overlaps
Allows for the computation of higher ηj efficiently
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Surprising results in [E. Ilievski, E. Quinn, J-S. Caux, arXiv:1610.06911]

ρ ∼ exp

(∑
s

∫
dλ βs(λ)Qs(λ)

)
,

where

Qs(λ) =
∞∑
k=1

λk−1

(k − 1)!
Qs,k

It is derived:

ηj(λ+ iη/2)ηj(λj − iη/2) = eβj (λ)(1 + ηj−1(λ))(1 + ηj+1(λ))

If the Y -system holds: All βs(λ) = 0!
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Solution: Truncated GGE!

There exists a series of tGGE density matrices ρN , N = 1 . . .∞ such that all
local correlations evaluated using them tend to their physical values.

ρN ∼ exp

 Ns∑
s=1

Nd∑
j=1

β
(N)
s,j Qs,j


(this is a theorem... more or less)



The 〈σz
1σ

y
3 〉 correlator, Dimer quench, ∆ = 4, ρN ∼ exp

(∑N
s,j=1 β

(N)
s,j Qs,j

)



How does the proof work?
Generalized TBA for the density matrix ρN ∼ exp

(∑N
s,j=1 β

N
s,jQs,j

)
log ηNj = δj≤N

N∑
k=1

βN
j,kd

(k) + d ? (log(1 + ηNj−1) + log(1 + ηNj+1))

For the true ηj functions we can find the desired sources fj from the integrals

log ηj = fj + d ? (log(1 + ηj−1) + log(1 + ηj+1))

We want: ηNj → ηj , therefore the source terms should match

N∑
k=1

βN
j,kd

(k) → fj
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It works even if we leave out charges!
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The Y-system relation is satisfied at each truncation:

ηNj (λ+ iη/2)ηNj (λj − iη/2) = (1 + ηNj−1(λ))(1 + ηNj+1(λ))

Yet it can be broken for the limit ηj = limN→∞ ηNj !
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