Thermalization in quantum systems III: Integrable models

Balázs Pozsgay

MTA Prémium Postdoctoral Program
,"Momentum" Statistical Field Theory Research group
Department of Theoretical Physics, BME
24. May 2017

Motivation

- Thermalization in closed quantum systems, Statistical physics?
- Exceptions: Integrable models
- Gibbs Ensemble, Generalized Gibbs Ensemble
- Exact solutions in integrable models

Motivation

- Thermalization in closed quantum systems, Statistical physics?
- Exceptions: Integrable models
- Gibbs Ensemble, Generalized Gibbs Ensemble
- Exact solutions in integrable models
- Thermalization in closed quantum systems, Statistical physics?
- Exceptions: Integrable models
- Gibbs Ensemble, Generalized Gibbs Ensemble
- Exact solutions in integrable models
- Thermalization in closed quantum systems, Statistical physics?
- Exceptions: Integrable models
- Gibbs Ensemble, Generalized Gibbs Ensemble
- Exact solutions in integrable models

Setting the stage

Equilibration after global quenches

- The models: 1D spin chains given by a local Hamiltonian H
- Initial state: $\left|\Psi_{0}\right\rangle$
- Question: If $|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle$, then for \mathcal{O} local operators

Setting the stage

Equilibration after global quenches

- The models: 1D spin chains given by a local Hamiltonian H
- Initial state: $\left|\Psi_{0}\right\rangle$
- Ground state of a local Hamiltonian H_{0}
- States prepared according to simple (local) rules Examples:

Or

- Satisfies the cluster decomposition principle for local operators:
\square
- Question: If $|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle$, then for \mathcal{O} local operators

$$
\lim _{t \rightarrow \infty}\langle\psi(t)| \mathcal{O}|\psi(t)\rangle=? ? ?
$$

Setting the stage

Equilibration after global quenches

- The models: 1D spin chains given by a local Hamiltonian H
- Initial state: $\left|\Psi_{0}\right\rangle$
- Ground state of a local Hamiltonian H_{0}
- States prepared according to simple (local) rules Examples:

- Satisfies the cluster decomposition principle for local operators:
\square
- Question: If $|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle$, then for \mathcal{O} local operators

Setting the stage

Equilibration after global quenches

- The models: 1D spin chains given by a local Hamiltonian H
- Initial state: $\left|\Psi_{0}\right\rangle$
- Ground state of a local Hamiltonian H_{0}
- States prepared according to simple (local) rules

Examples:

$$
\left|\Psi_{0}\right\rangle=|N\rangle=\otimes_{k=1}^{L / 2}|\uparrow \downarrow\rangle
$$

or

$$
\left|\Psi_{0}\right\rangle=|D\rangle=\otimes_{k=1}^{L / 2} \frac{|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle}{\sqrt{2}}
$$

- Satisfies the cluster decomposition principle for local operators:
- Question: If $|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle$, then for \mathcal{O} local operators

Setting the stage

Equilibration after global quenches

- The models: 1D spin chains given by a local Hamiltonian H
- Initial state: $\left|\Psi_{0}\right\rangle$
- Ground state of a local Hamiltonian H_{0}
- States prepared according to simple (local) rules

Examples:

$$
\left|\Psi_{0}\right\rangle=|N\rangle=\otimes_{k=1}^{L / 2}|\uparrow \downarrow\rangle
$$

or

$$
\left|\Psi_{0}\right\rangle=|D\rangle=\otimes_{k=1}^{L / 2} \frac{|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle}{\sqrt{2}}
$$

- Satisfies the cluster decomposition principle for local operators:

$$
\lim _{x \rightarrow \infty}\left\langle\Psi_{0}\right| \mathcal{O}(y) \mathcal{O}(x+y)\left|\Psi_{0}\right\rangle=\left\langle\Psi_{0}\right| \mathcal{O}\left|\Psi_{0}\right\rangle^{2}
$$

- Question: If $|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle$, then for \mathcal{O} local operators

Setting the stage

Equilibration after global quenches

- The models: 1D spin chains given by a local Hamiltonian H
- Initial state: $\left|\Psi_{0}\right\rangle$
- Ground state of a local Hamiltonian H_{0}
- States prepared according to simple (local) rules

Examples:

$$
\left|\Psi_{0}\right\rangle=|N\rangle=\otimes_{k=1}^{L / 2}|\uparrow \downarrow\rangle
$$

or

$$
\left|\Psi_{0}\right\rangle=|D\rangle=\otimes_{k=1}^{L / 2} \frac{|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle}{\sqrt{2}}
$$

- Satisfies the cluster decomposition principle for local operators:

$$
\lim _{x \rightarrow \infty}\left\langle\Psi_{0}\right| \mathcal{O}(y) \mathcal{O}(x+y)\left|\Psi_{0}\right\rangle=\left\langle\Psi_{0}\right| \mathcal{O}\left|\Psi_{0}\right\rangle^{2}
$$

- Question: If $|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle$, then for \mathcal{O} local operators

$$
\lim _{t \rightarrow \infty}\langle\Psi(t)| \mathcal{O}|\Psi(t)\rangle=? ? ?
$$

Time dependence of local observables:

$$
\langle\mathcal{O}(t)\rangle=\sum_{n, m}\left\langle\Psi_{0} \mid n\right\rangle\langle n| \mathcal{O}|m\rangle\left\langle m \mid \Psi_{0}\right\rangle e^{-i t\left(E_{m}-E_{n}\right)}
$$

Long-time limit, diagonal ensemble:

When can we speak about thermalization?

Time dependence of local observables:

$$
\langle\mathcal{O}(t)\rangle=\sum_{n, m}\left\langle\Psi_{0} \mid n\right\rangle\langle n| \mathcal{O}|m\rangle\left\langle m \mid \Psi_{0}\right\rangle e^{-i t\left(E_{m}-E_{n}\right)}
$$

Long-time limit, diagonal ensemble:

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} d t^{\prime}\left\langle\mathcal{O}\left(t^{\prime}\right)\right\rangle=\sum_{n}\left|c_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle, \quad c_{n}=\left\langle\Psi_{0} \mid n\right\rangle
$$

When can we speak about thermalization?

Time dependence of local observables:

$$
\langle\mathcal{O}(t)\rangle=\sum_{n, m}\left\langle\Psi_{0} \mid n\right\rangle\langle n| \mathcal{O}|m\rangle\left\langle m \mid \Psi_{0}\right\rangle e^{-i t\left(E_{m}-E_{n}\right)}
$$

Long-time limit, diagonal ensemble:

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} d t^{\prime}\left\langle\mathcal{O}\left(t^{\prime}\right)\right\rangle=\sum_{n}\left|c_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle, \quad c_{n}=\left\langle\Psi_{0} \mid n\right\rangle
$$

When can we speak about thermalization?

Thermalization

Canonical ensemble:

$$
\langle\mathcal{O}\rangle_{T}=\operatorname{Tr}\left[\mathcal{O} \rho_{G}\right] \quad \rho_{G}=\frac{e^{-H / T}}{\operatorname{Tr} e^{-H / T}}
$$

Thermalization happens if

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} d t^{\prime}\left\langle\mathcal{O}\left(t^{\prime}\right)\right\rangle=\operatorname{Tr}\left[\mathcal{O} \rho_{G}\right]
$$

T is fixed from

$$
\left\langle\Psi_{0}\right| H\left|\Psi_{0}\right\rangle=\operatorname{Tr}\left[H \rho_{G}\right]
$$

Find T from the initial state and make predictions!
Only one T for all local observables!

Thermalization

Canonical ensemble:

$$
\langle\mathcal{O}\rangle_{T}=\operatorname{Tr}\left[\mathcal{O} \rho_{G}\right] \quad \rho_{G}=\frac{e^{-H / T}}{\operatorname{Tr} e^{-H / T}}
$$

Thermalization happens if

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} d t^{\prime}\left\langle\mathcal{O}\left(t^{\prime}\right)\right\rangle=\operatorname{Tr}\left[\mathcal{O} \rho_{G}\right]
$$

T is fixed from

$$
\left\langle\Psi_{0}\right| H\left|\Psi_{0}\right\rangle=\operatorname{Tr}\left[H \rho_{G}\right]
$$

Find T from the initial state and make predictions!
Only one T for all local observables!

Thermalization

Canonical ensemble:

$$
\langle\mathcal{O}\rangle_{T}=\operatorname{Tr}\left[\mathcal{O} \rho_{G}\right] \quad \rho_{G}=\frac{e^{-H / T}}{\operatorname{Tr} e^{-H / T}}
$$

Thermalization happens if

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} d t^{\prime}\left\langle\mathcal{O}\left(t^{\prime}\right)\right\rangle=\operatorname{Tr}\left[\mathcal{O} \rho_{G}\right]
$$

T is fixed from

$$
\left\langle\Psi_{0}\right| H\left|\Psi_{0}\right\rangle=\operatorname{Tr}\left[H \rho_{G}\right]
$$

Find T from the initial state and make predictions!
Only one T for all local observables!

Canonical ensemble:

$$
\langle\mathcal{O}\rangle_{T}=\operatorname{Tr}\left[\mathcal{O} \rho_{G}\right] \quad \rho_{G}=\frac{e^{-H / T}}{\operatorname{Tr} e^{-H / T}}
$$

Thermalization happens if

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} d t^{\prime}\left\langle\mathcal{O}\left(t^{\prime}\right)\right\rangle=\operatorname{Tr}\left[\mathcal{O} \rho_{G}\right]
$$

T is fixed from

$$
\left\langle\Psi_{0}\right| H\left|\Psi_{0}\right\rangle=\operatorname{Tr}\left[H \rho_{G}\right]
$$

Find T from the initial state and make predictions!
Only one T for all local observables!

Canonical ensemble:

$$
\langle\mathcal{O}\rangle_{T}=\operatorname{Tr}\left[\mathcal{O} \rho_{G}\right] \quad \rho_{G}=\frac{e^{-H / T}}{\operatorname{Tr} e^{-H / T}}
$$

Thermalization happens if

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} d t^{\prime}\left\langle\mathcal{O}\left(t^{\prime}\right)\right\rangle=\operatorname{Tr}\left[\mathcal{O} \rho_{G}\right]
$$

T is fixed from

$$
\left\langle\Psi_{0}\right| H\left|\Psi_{0}\right\rangle=\operatorname{Tr}\left[H \rho_{G}\right]
$$

Find T from the initial state and make predictions!
Only one T for all local observables!

Mechanism

Eigenstate Thermalisation Hypothesis (ETH): $\langle\Psi| \mathcal{O}|\Psi\rangle=f(E / L)$

$$
\begin{aligned}
\mathrm{DE} & =\mathrm{GE} \\
\sum_{n}\left|c_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle & \approx \operatorname{Tr}\left[\mathcal{O} \rho_{G}\right]
\end{aligned}
$$

Unrelated weights, but the same energy density!

Mechanism

Eigenstate Thermalisation Hypothesis (ETH): $\langle\Psi| \mathcal{O}|\Psi\rangle=f(E / L)$

$$
\begin{aligned}
\mathrm{DE} & =\mathrm{GE} \\
\sum_{n}\left|c_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle & \approx \operatorname{Tr}\left[\mathcal{O} \rho_{G}\right]
\end{aligned}
$$

Unrelated weights, but the same energy density!

Mechanism

Eigenstate Thermalisation Hypothesis (ETH): $\langle\Psi| \mathcal{O}|\Psi\rangle=f(E / L)$

$$
\begin{aligned}
\mathrm{DE} & =\mathrm{GE} \\
\sum_{n}\left|c_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle & \approx \operatorname{Tr}\left[\mathcal{O} \rho_{G}\right]
\end{aligned}
$$

Unrelated weights, but the same energy density!
CDP:

$$
\frac{\Delta E}{L}=\frac{\sqrt{\left\langle\Psi_{0}\right| H^{2}\left|\Psi_{0}\right\rangle-\left\langle\Psi_{0}\right| H\left|\Psi_{0}\right\rangle^{2}}}{L} \sim \frac{1}{\sqrt{L}}
$$

Integrable models

Definition?

- Exactly solvable
- Bethe Ansatz solvable (XXX Heisenberg spin chain)
- Existence of a set of higher charges

XXZ Hamiltonian:

$$
H=\sum_{j=1}^{L}\left(\sigma_{j}^{\times} \sigma_{j+1}^{\times}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right)
$$

Example for a new charge: (at $\Delta=1$)

$$
Q_{3}=\sum_{j=1}^{L} \sigma_{j} \cdot\left(\sigma_{j+1} \times \sigma_{j+2}\right)
$$

Integrable models

Definition?

- Exactly solvable
- Bethe Ansatz solvable (XXX Heisenberg spin chain)
- Existence of a set of higher charges

XXZ Hamiltonian:

Example for a new charge: (at $\Delta=1$)

Integrable models

Definition?

- Exactly solvable
- Bethe Ansatz solvable (XXX Heisenberg spin chain)
- Existence of a set of higher charges

XXZ Hamiltonian:

Example for a new charge: (at $\Delta=1$)

Integrable models

Definition?

- Exactly solvable
- Bethe Ansatz solvable (XXX Heisenberg spin chain)
- Existence of a set of higher charges

XXZ Hamiltonian:

Example for a new charge: (at $\Delta=1$)

Integrable models

Definition?

- Exactly solvable
- Bethe Ansatz solvable (XXX Heisenberg spin chain)
- Existence of a set of higher charges

XXZ Hamiltonian:

$$
H=\sum_{j=1}^{L}\left(\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right)
$$

Example for a new charge: (at $\Delta=1$)

Integrable models

Definition?

- Exactly solvable
- Bethe Ansatz solvable (XXX Heisenberg spin chain)
- Existence of a set of higher charges

XXZ Hamiltonian:

$$
H=\sum_{j=1}^{L}\left(\sigma_{j}^{㐅} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right)
$$

Example for a new charge: (at $\Delta=1$)

$$
Q_{3}=\sum_{j=1}^{L} \sigma_{j} \cdot\left(\sigma_{j+1} \times \sigma_{j+2}\right)
$$

Quench from the Néel state, $\Delta=3$

$$
\left|\Psi_{0}\right\rangle=|\uparrow \downarrow \uparrow \downarrow \ldots\rangle
$$

iTEBD simulation, Miklós Werner

Higher conserved charges: $\left\{Q_{j}\right\}$, such that

$$
\left[Q_{j}, Q_{k}\right]=0
$$

They are extensive: $\left|Q_{j}\right| \sim L$
$H \in\left\{Q_{j}\right\}$
In a finite chain: number of operators grows polynomially with L.

Higher conserved charges: $\left\{Q_{j}\right\}$, such that

$$
\left[Q_{j}, Q_{k}\right]=0
$$

They are extensive: $\left|Q_{j}\right| \sim L$
$H \in\left\{Q_{j}\right\}$
In a finite chain: number of operators grows polynomially with L.

GGE

The Generalized Gibbs Ensemble:

$$
\begin{array}{cc}
\langle\mathcal{O}\rangle_{G G E}=\operatorname{Tr}\left[\mathcal{O} \rho_{G G E}\right] & \rho_{G G E}=\frac{e^{-\sum_{j} \lambda_{j} Q_{j}}}{\operatorname{Tr} e^{-\lambda_{j} Q_{j}}} \\
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} d t^{\prime}\left\langle\mathcal{O}\left(t^{\prime}\right)\right\rangle & ? \quad \operatorname{Tr}\left[\mathcal{O} \rho_{G G E}\right]
\end{array}
$$

M. Rigol et. al., Phys. Rev. Lett. 98, 050405 (2007)

Lagrange multipliers are fixed from

$$
\left\langle\Psi_{0}\right| Q_{j}\left|\Psi_{0}\right\rangle=\operatorname{Tr}\left[Q_{j} \rho_{G G E}\right]
$$

Find them and make predictions!

Problems: Infinite number of operators, norm, locality, etc.

GGE

The Generalized Gibbs Ensemble:

$$
\begin{gathered}
\langle\mathcal{O}\rangle_{G G E}=\operatorname{Tr}\left[\mathcal{O} \rho_{G G E}\right] \\
\rho_{G G E}=\frac{e^{-\sum_{j} \lambda_{j} Q_{j}}}{\operatorname{Tr} e^{-\lambda_{j} Q_{j}}} \\
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} d t^{\prime}\left\langle\mathcal{O}\left(t^{\prime}\right)\right\rangle
\end{gathered} \quad ? \quad \operatorname{Tr}\left[\mathcal{O} \rho_{G G E}\right] \quad .
$$

M. Rigol et. al., Phys. Rev. Lett. 98, 050405 (2007)

Lagrange multipliers are fixed from

$$
\left\langle\Psi_{0}\right| Q_{j}\left|\Psi_{0}\right\rangle=\operatorname{Tr}\left[Q_{j} \rho_{G G E}\right] \quad j=1 \ldots \infty
$$

Find them and make predictions!
Problems: Infinite number of operators, norm, locality, etc.

GGE

The Generalized Gibbs Ensemble:

$$
\begin{gathered}
\langle\mathcal{O}\rangle_{G G E}=\operatorname{Tr}\left[\mathcal{O} \rho_{G G E}\right] \\
\lim _{G G E}=\frac{e^{-\sum_{j} \lambda_{j} Q_{j}}}{\operatorname{Tr} e^{-\lambda_{j} Q_{j}}} \int_{0}^{t} d t^{\prime}\left\langle\mathcal{O}\left(t^{\prime}\right)\right\rangle
\end{gathered} \quad ? \quad \operatorname{Tr}\left[\mathcal{O} \rho_{G G E}\right] \quad .
$$

M. Rigol et. al., Phys. Rev. Lett. 98, 050405 (2007)

Lagrange multipliers are fixed from

$$
\left\langle\Psi_{0}\right| Q_{j}\left|\Psi_{0}\right\rangle=\operatorname{Tr}\left[Q_{j} \rho_{G G E}\right] \quad j=1 \ldots \infty
$$

Find them and make predictions!
Problems: Infinite number of operators, norm, locality, etc.

GGE

The Generalized Gibbs Ensemble:

$$
\begin{array}{cc}
\langle\mathcal{O}\rangle_{G G E}=\operatorname{Tr}\left[\mathcal{O} \rho_{G G E}\right] & \rho_{G G E}=\frac{e^{-\sum_{j} \lambda_{j} Q_{j}}}{\operatorname{Tr} e^{-\lambda_{j} Q_{j}}} \\
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} d t^{\prime}\left\langle\mathcal{O}\left(t^{\prime}\right)\right\rangle & ? \quad \operatorname{Tr}\left[\mathcal{O} \rho_{G G E}\right]
\end{array}
$$

M. Rigol et. al., Phys. Rev. Lett. 98, 050405 (2007)

Lagrange multipliers are fixed from

$$
\left\langle\Psi_{0}\right| Q_{j}\left|\Psi_{0}\right\rangle=\operatorname{Tr}\left[Q_{j} \rho_{G G E}\right] \quad j=1 \ldots \infty
$$

Find them and make predictions!
Problems: Infinite number of operators, norm, locality, etc.

Quench from the Néel state, $\Delta=3$

$$
\left|\Psi_{0}\right\rangle=|\uparrow \downarrow \uparrow \downarrow \ldots\rangle
$$

iTEBD simulation, Miklós Werner

Mechanism

Generalized Eigenstate Thermalisation Hypothesis: $\langle\Psi| A|\Psi\rangle=A\left(\left\{Q_{j} / L\right\}\right)$
A. C. Cassidy et. al., Phys. Rev. Lett. 106, 140405 (2011)

Mechanism

Generalized Eigenstate Thermalisation Hypothesis: $\langle\Psi| A|\Psi\rangle=A\left(\left\{Q_{j} / L\right\}\right)$
A. C. Cassidy et. al., Phys. Rev. Lett. 106, 140405 (2011)

$$
\begin{aligned}
\mathrm{DE} & =\mathrm{GGE} \\
\sum_{n}\left|c_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle & \approx \operatorname{Tr}\left[\frac{e^{-\sum_{j} \lambda_{j} Q_{j}}}{Z} \mathcal{O}\right]
\end{aligned}
$$

Mechanism

Generalized Eigenstate Thermalisation Hypothesis: $\langle\Psi| A|\Psi\rangle=A\left(\left\{Q_{j} / L\right\}\right)$
A. C. Cassidy et. al., Phys. Rev. Lett. 106, 140405 (2011)

$$
\begin{aligned}
\mathrm{DE} & =\mathrm{GGE} \\
\sum_{n}\left|c_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle & \approx \operatorname{Tr}\left[\frac{e^{-\sum_{j} \lambda_{j} Q_{j}}}{Z} \mathcal{O}\right]
\end{aligned}
$$

CDP:

$$
\frac{\Delta Q_{j}}{L}=\frac{\sqrt{\left\langle\Psi_{0}\right| Q_{j}^{2}\left|\Psi_{0}\right\rangle-\left\langle\Psi_{0}\right| Q_{j}\left|\Psi_{0}\right\rangle^{2}}}{L} \sim \frac{1}{\sqrt{L}}
$$

$$
H=\sum_{j=1}^{L}\left(\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}\right)
$$

Solution: Jordan Wigner transformation.

$$
c_{j}^{\dagger}=e^{i \pi \sum_{k=1}^{j-1} \sigma_{k}^{+} \sigma_{k}^{-}} \sigma_{j}^{+} \quad c_{j}=e^{-i \pi \sum_{k=1}^{j-1} \sigma_{k}^{+} \sigma_{k}^{-}} \sigma_{j}^{-}
$$

We get the fermionic relations:

$$
\left\{c_{j}, c_{k}\right\}=\left\{c_{j}^{\dagger}, c_{k}^{\dagger}\right\}=0, \quad\left\{c_{j}^{\dagger}, c_{k}\right\}=\delta_{j, k}
$$

Hamiltonian is written as $H=\sum_{k} \varepsilon_{k} \tilde{c}_{k}^{\dagger} \tilde{c}_{k}$, where

$$
\tilde{c}_{k}^{\dagger}=\frac{1}{\sqrt{L}} \sum_{j=1}^{L} e^{i k j} c_{j}^{\dagger} \quad \tilde{c}_{k}=\frac{1}{\sqrt{L}} \sum_{j=1}^{L} e^{-i k j} c_{j}
$$

Charges: $\tilde{Q}_{k}=\tilde{n}_{k}=\tilde{c}_{k}^{\dagger} \tilde{c}_{k}$ GGE:

$$
\rho_{G G E}=\frac{1}{Z} e^{-\sum_{k} \tilde{\lambda}_{k} \tilde{n}_{k}}
$$

States in the TDL: Given by density $n(k)$.

GETH: In the TDL the mean values of local operators can be expressed using $n(k)$ only (Wick theorem).

Example:

$$
\left\langle N_{1} N_{2}\right\rangle=\int \frac{d k_{1}}{2 \pi} \int \frac{d k_{2}}{2 \pi} n\left(k_{1}\right) n\left(k_{2}\right)\left(1+\cos \left(k_{1}-k_{2}\right)\right)
$$

XX model

Charges: $\tilde{Q}_{k}=\tilde{n}_{k}=\tilde{c}_{k}^{\dagger} \tilde{c}_{k}$ GGE:

$$
\rho_{G G E}=\frac{1}{Z} e^{-\sum_{k} \tilde{\lambda}_{k} \tilde{n}_{k}}
$$

States in the TDL: Given by density $n(k)$.
GETH: In the TDL the mean values of local operators can be expressed using $n(k)$ only (Wick theorem).

Example:

$$
\left\langle N_{1} N_{2}\right\rangle=\int \frac{d k_{1}}{2 \pi} \int \frac{d k_{2}}{2 \pi} n\left(k_{1}\right) n\left(k_{2}\right)\left(1+\cos \left(k_{1}-k_{2}\right)\right)
$$

model

Charges: $\tilde{Q}_{k}=\tilde{n}_{k}=\tilde{c}_{k}^{\dagger} \tilde{c}_{k}$ GGE:

$$
\rho_{G G E}=\frac{1}{Z} e^{-\sum_{k} \tilde{\lambda}_{k} \tilde{n}_{k}}
$$

States in the TDL: Given by density $n(k)$.
GETH: In the TDL the mean values of local operators can be expressed using $n(k)$ only (Wick theorem).

Example:

$$
\left\langle N_{1} N_{2}\right\rangle=\int \frac{d k_{1}}{2 \pi} \int \frac{d k_{2}}{2 \pi} n\left(k_{1}\right) n\left(k_{2}\right)\left(1+\cos \left(k_{1}-k_{2}\right)\right)
$$

XX model

What are the properties of this GGE? $\rho_{G G E}=\frac{1}{z} e^{-\sum_{k} \tilde{\lambda}_{k} \tilde{n}_{k}}$

Partial solution to the locality problem: New basis for the charges.

A local GGE?

$$
\rho_{G G E}=\frac{1}{Z} e^{-\sum_{j} \lambda_{j} Q_{j}}
$$

XX model

What are the properties of this GGE? $\rho_{G G E}=\frac{1}{Z} e^{-\sum_{k} \tilde{\lambda}_{k} \tilde{n}_{k}}$

- In the thermal case we would have $\tilde{\lambda}_{k}=\frac{\varepsilon_{k}}{T}$
- Mode dependent temperatures (completely fixed by the initial state)
- Measured by experiment! Experimental observation of a generalized Gibbs ensemble, T. Langen et. al., Science 348 (2015) 207-211
- Highly non-local!
- Number of parameters grows linearly with the volume: still predictive!

Partial solution to the locality problem: New basis for the charges.

A local GGE?

$$
\rho_{G G E}=\frac{1}{Z} e^{-\sum_{j} \lambda_{j} Q_{j}}
$$

XX model

What are the properties of this GGE? $\rho_{G G E}=\frac{1}{z} e^{-\sum_{k} \tilde{\lambda}_{k} \tilde{n}_{k}}$

- In the thermal case we would have $\tilde{\lambda}_{k}=\frac{\varepsilon_{k}}{T}$
- Mode dependent temperatures (completely fixed by the initial state)
- Measured by experiment! Experimental observation of a generalized Gibbs ensemble, T. Langen et. al., Science 348 (2015) 207-211
- Highly non-local!
- Number of parameters grows linearly with the volume: still predictive!

Partial solution to the locality problem: New basis for the charges.

What are the properties of this GGE? $\rho_{G G E}=\frac{1}{z} e^{-\sum_{k} \tilde{\lambda}_{k} \tilde{n}_{k}}$

- In the thermal case we would have $\tilde{\lambda}_{k}=\frac{\varepsilon_{k}}{T}$
- Mode dependent temperatures (completely fixed by the initial state)
- Measured by experiment! Experimental observation of a generalized Gibbs ensemble, T. Langen et. al., Science 348 (2015) 207-211
- Highly non-local!
- Number of parameters grows linearly with the volume: still predictive!

Partial solution to the locality problem: New basis for the charges.

What are the properties of this GGE? $\rho_{G G E}=\frac{1}{z} e^{-\sum_{k} \tilde{\lambda}_{k} \tilde{n}_{k}}$

- In the thermal case we would have $\tilde{\lambda}_{k}=\frac{\varepsilon_{k}}{T}$
- Mode dependent temperatures (completely fixed by the initial state)
- Measured by experiment! Experimental observation of a generalized Gibbs ensemble, T. Langen et. al., Science 348 (2015) 207-211
- Highly non-local!
- Number of parameters grows linearly with the volume: still predictive!

Partial solution to the locality problem: New basis for the charges.

What are the properties of this GGE? $\rho_{G G E}=\frac{1}{z} e^{-\sum_{k} \tilde{\lambda}_{k} \tilde{n}_{k}}$

- In the thermal case we would have $\tilde{\lambda}_{k}=\frac{\varepsilon_{k}}{T}$
- Mode dependent temperatures (completely fixed by the initial state)
- Measured by experiment! Experimental observation of a generalized Gibbs ensemble, T. Langen et. al., Science 348 (2015) 207-211
- Highly non-local!
- Number of parameters grows linearly with the volume: still predictive!

Partial solution to the locality problem: New basis for the charges.

What are the properties of this GGE? $\rho_{G G E}=\frac{1}{z} e^{-\sum_{k} \tilde{\lambda}_{k} \tilde{n}_{k}}$

- In the thermal case we would have $\tilde{\lambda}_{k}=\frac{\varepsilon_{k}}{T}$
- Mode dependent temperatures (completely fixed by the initial state)
- Measured by experiment! Experimental observation of a generalized Gibbs ensemble, T. Langen et. al., Science 348 (2015) 207-211
- Highly non-local!
- Number of parameters grows linearly with the volume: still predictive!

Partial solution to the locality problem: New basis for the charges.

What are the properties of this GGE? $\rho_{G G E}=\frac{1}{Z} e^{-\sum_{k} \tilde{\lambda}_{k} \tilde{n}_{k}}$

- In the thermal case we would have $\tilde{\lambda}_{k}=\frac{\varepsilon_{k}}{T}$
- Mode dependent temperatures (completely fixed by the initial state)
- Measured by experiment! Experimental observation of a generalized Gibbs ensemble, T. Langen et. al., Science 348 (2015) 207-211
- Highly non-local!
- Number of parameters grows linearly with the volume: still predictive!

Partial solution to the locality problem: New basis for the charges.

$$
Q_{j}=\sum_{k} 2 \cos (j k) \tilde{n}_{k}=\sum_{l=1}^{L}\left(c_{l}^{\dagger} c_{l+j}+c c .\right)
$$

What are the properties of this GGE? $\rho_{G G E}=\frac{1}{z} e^{-\sum_{k} \tilde{\lambda}_{k} \tilde{n}_{k}}$

- In the thermal case we would have $\tilde{\lambda}_{k}=\frac{\varepsilon_{k}}{T}$
- Mode dependent temperatures (completely fixed by the initial state)
- Measured by experiment! Experimental observation of a generalized Gibbs ensemble, T. Langen et. al., Science 348 (2015) 207-211
- Highly non-local!
- Number of parameters grows linearly with the volume: still predictive!

Partial solution to the locality problem: New basis for the charges.

$$
Q_{j}=\sum_{k} 2 \cos (j k) \tilde{n}_{k}=\sum_{l=1}^{L}\left(c_{l}^{\dagger} c_{l+j}+c c .\right)
$$

A local GGE?

$$
\rho_{G G E}=\frac{1}{Z} e^{-\sum_{j} \lambda_{j} Q_{j}}
$$

Truncated GGE

$$
\rho_{G G E}^{(n)}=\frac{1}{Z} e^{-\sum_{j}^{n} \lambda_{j} Q_{j}}
$$

For local observables the limit exists:

$$
\langle\mathcal{O}\rangle_{G G E}=\lim _{n \rightarrow \infty} \operatorname{Tr}\left[\rho_{G G E}^{(n)} \mathcal{O}\right]
$$

At every n the ensemble is local, and

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\lim _{n \rightarrow \infty} \operatorname{Tr}\left[\rho_{G G E}^{(n)} \mathcal{O}\right]
$$

Role of locality: most local observables converge most quickly
M. Fagotti, F. Essler, Phys. Rev. B 87, 245107 (2013)

Truncated GGE

$$
\rho_{G G E}^{(n)}=\frac{1}{Z} e^{-\sum_{j}^{n} \lambda_{j} Q_{j}}
$$

For local observables the limit exists:

$$
\langle\mathcal{O}\rangle_{G G E}=\lim _{n \rightarrow \infty} \operatorname{Tr}\left[\rho_{G G E}^{(n)} \mathcal{O}\right]
$$

At every n the ensemble is local, and

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\lim _{n \rightarrow \infty} \operatorname{Tr}\left[\rho_{G G E}^{(n)} \mathcal{O}\right]
$$

Role of locality: most local observables converge most quickly
M. Fagotti, F. Essler, Phys. Rev. B 87, 245107 (2013)

Truncated GGE

Interacting XXZ model

$$
H=\sum_{j=1}^{L}\left(\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\cosh (\eta)\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right)
$$

Interacting XXZ model

$$
H=\sum_{j=1}^{L}\left(\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\cosh (\eta)\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right)
$$

- Solvable by the Bethe Ansatz: two-particle reducible scattering

$$
e^{i p}=\frac{\sinh (\lambda+i \eta / 2)}{\sinh (\lambda-i \eta / 2)} \quad S\left(\lambda_{1}, \lambda_{2}\right)=\frac{\sinh \left(\lambda_{1}-\lambda_{2}-i \eta\right)}{\sinh \left(\lambda_{1}-\lambda_{2}+i \eta\right)}
$$

Interacting XXZ model

$$
H=\sum_{j=1}^{L}\left(\sigma_{j}^{㐅} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\cosh (\eta)\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right)
$$

- Solvable by the Bethe Ansatz: two-particle reducible scattering

$$
e^{i p}=\frac{\sinh (\lambda+i \eta / 2)}{\sinh (\lambda-i \eta / 2)} \quad S\left(\lambda_{1}, \lambda_{2}\right)=\frac{\sinh \left(\lambda_{1}-\lambda_{2}-i \eta\right)}{\sinh \left(\lambda_{1}-\lambda_{2}+i \eta\right)}
$$

- Spin waves can form bound states: so-called strings

- Physical picture: bound states - different particles
- In the TDL: densities for the k-strings $\rho_{k}(\lambda)$
- GETH: $\langle\Psi| \mathcal{O}|\Psi\rangle=\mathcal{O}\left(\left\{\rho_{k}(p)\right\}\right)$ M. Mestyán and B.P., J. Stat. Mech. (2014) P09020
- GGE can be built using non-local operators whose eigenvalues are the densities:

$$
\hat{\rho}_{k}(u)|\Psi\rangle=\rho_{k}(u)|\Psi\rangle
$$

E. Ilievski et. al, Phys. Rev. B 95, 115128 (2017)

- Truncated GGE can be built using local and quasi-local charges with increasing range
E. Vernier, B.P., arXiv:1703.09516

XXZ chain

- Physical picture: bound states - different particles
- In the TDL: densities for the k-strings $\rho_{k}(\lambda)$
- GETH: $\langle\Psi| \mathcal{O}|\Psi\rangle=\mathcal{O}\left(\left\{\rho_{k}(p)\right\}\right)$
M. Mestyán and B.P., J. Stat. Mech. (2014) P09020
- GGE can be built using non-local operators whose eigenvalues are the densities:

$$
\hat{\rho}_{k}(u)|\Psi\rangle=\rho_{k}(u)|\Psi\rangle
$$

E. Ilievski et. al, Phys. Rev. B 95, 115128 (2017)

- Truncated GGE can be built using local and quasi-local charges with increasing range
E. Vernier, B.P., arXiv:1703.09516

XXZ chain

- Physical picture: bound states - different particles
- In the TDL: densities for the k-strings $\rho_{k}(\lambda)$
- GETH: $\langle\Psi| \mathcal{O}|\Psi\rangle=\mathcal{O}\left(\left\{\rho_{k}(p)\right\}\right)$
M. Mestyán and B.P., J. Stat. Mech. (2014) P09020
- GGE can be built using non-local operators whose eigenvalues are the densities:

$$
\hat{\rho}_{k}(u)|\Psi\rangle=\rho_{k}(u)|\Psi\rangle
$$

E. Ilievski et. al, Phys. Rev. B 95, 115128 (2017)

- Truncated GGE can be built using local and quasi-local charges with increasing range
E. Vernier, B.P., arXiv:1703.09516
- Physical picture: bound states - different particles
- In the TDL: densities for the k-strings $\rho_{k}(\lambda)$
- GETH: $\langle\Psi| \mathcal{O}|\Psi\rangle=\mathcal{O}\left(\left\{\rho_{k}(p)\right\}\right)$ M. Mestyán and B.P., J. Stat. Mech. (2014) P09020
- GGE can be built using non-local operators whose eigenvalues are the densities:

$$
\hat{\rho}_{k}(u)|\Psi\rangle=\rho_{k}(u)|\Psi\rangle
$$

E. Ilievski et. al, Phys. Rev. B 95, 115128 (2017)

- Truncated GGE can be built using local and quasi-local charges with increasing range
E. Vernier, B.P., arXiv:1703.09516
- Physical picture: bound states - different particles
- In the TDL: densities for the k-strings $\rho_{k}(\lambda)$
- GETH: $\langle\Psi| \mathcal{O}|\Psi\rangle=\mathcal{O}\left(\left\{\rho_{k}(p)\right\}\right)$
M. Mestyán and B.P., J. Stat. Mech. (2014) P09020
- GGE can be built using non-local operators whose eigenvalues are the densities:

$$
\hat{\rho}_{k}(u)|\Psi\rangle=\rho_{k}(u)|\Psi\rangle
$$

E. Ilievski et. al, Phys. Rev. B 95, 115128 (2017)

- Truncated GGE can be built using local and quasi-local charges with increasing range
E. Vernier, B.P., arXiv:1703.09516

XXZ chain

Quasi-local, quasi-conserved operators $Q_{s, j}$ with $s, j=1 \ldots \infty$ Operator norm: $\left|Q_{s, j}\right|^{2} \sim L$

$$
\begin{aligned}
Q_{2,1} & \sim \sum_{j=1}^{L}\left[S_{j} \cdot S_{j+2}+\frac{155}{252} S_{j} \cdot S_{j+3}+\frac{64}{63}\left(S_{j} \cdot S_{j+1}\right)\left(S_{j+2} \cdot S_{j+3}\right)-\right. \\
& \left.-\frac{212}{84}\left(S_{j} \cdot S_{j+2}\right)\left(S_{j+1} \cdot S_{j+3}\right)-\frac{44}{84}\left(S_{j} \cdot S_{j+3}\right)\left(S_{j+1} \cdot S_{j+2}\right)\right]+.
\end{aligned}
$$

These charges are important. Without them the GGE does not give good predictions.
B. Wouters et. al., Phys. Rev. Lett. 113 (2014), 117202 B. P. et. al., Phys. Rev. Lett. 113 (2014) 117203
E. Ilievski et. al., Phys. Rev. Lett. 115 (2015), 157201

Quasi-local, quasi-conserved operators $Q_{s, j}$ with $s, j=1 \ldots \infty$ Operator norm: $\left|Q_{s, j}\right|^{2} \sim L$

$$
\begin{aligned}
Q_{2,1} & \sim \sum_{j=1}^{L}\left[S_{j} \cdot S_{j+2}+\frac{155}{252} S_{j} \cdot S_{j+3}+\frac{64}{63}\left(S_{j} \cdot S_{j+1}\right)\left(S_{j+2} \cdot S_{j+3}\right)-\right. \\
& \left.-\frac{212}{84}\left(S_{j} \cdot S_{j+2}\right)\left(S_{j+1} \cdot S_{j+3}\right)-\frac{44}{84}\left(S_{j} \cdot S_{j+3}\right)\left(S_{j+1} \cdot S_{j+2}\right)\right]+\ldots
\end{aligned}
$$

These charges are important. Without them the GGE does not give good predictions.
B. Wouters et. al., Phys. Rev. Lett. 113 (2014), 117202 B. P. et. al., Phys. Rev. Lett. 113 (2014) 117203
E. Ilievski et. al., Phys. Rev. Lett. 115 (2015), 157201

Quasi-local, quasi-conserved operators $Q_{s, j}$ with $s, j=1 \ldots \infty$ Operator norm: $\left|Q_{s, j}\right|^{2} \sim L$

$$
\begin{aligned}
Q_{2,1} & \sim \sum_{j=1}^{L}\left[S_{j} \cdot S_{j+2}+\frac{155}{252} S_{j} \cdot S_{j+3}+\frac{64}{63}\left(S_{j} \cdot S_{j+1}\right)\left(S_{j+2} \cdot S_{j+3}\right)-\right. \\
& \left.-\frac{212}{84}\left(S_{j} \cdot S_{j+2}\right)\left(S_{j+1} \cdot S_{j+3}\right)-\frac{44}{84}\left(S_{j} \cdot S_{j+3}\right)\left(S_{j+1} \cdot S_{j+2}\right)\right]+\ldots
\end{aligned}
$$

These charges are important. Without them the GGE does not give good predictions.
B. Wouters et. al., Phys. Rev. Lett. 113 (2014), 117202
B. P. et. al., Phys. Rev. Lett. 113 (2014) 117203
E. Ilievski et. al., Phys. Rev. Lett. 115 (2015), 157201

Quench from the Dimer state, $\Delta=3$

$$
|\Psi(t=0)\rangle=\otimes_{j=1}^{L / 2} \frac{|\uparrow \downarrow-\downarrow \uparrow\rangle}{\sqrt{2}}
$$

Truncated GGE

The correlators $\left\langle\sigma_{1}^{z} \sigma_{3}^{z}\right\rangle$ and $\left\langle\sigma_{1}^{z} \sigma_{4}^{z}\right\rangle$ after adding n charges from the first n families

Thank you for your attention!

$$
H_{X X Z}=\sum_{j=1}^{L}\left\{\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right\}
$$

Bethe Ansatz equations for $\Delta=\cosh (\eta)>1$.

$$
e^{i p_{j} L}=\left(\frac{\sin \left(\lambda_{j}+i \eta / 2\right)}{\sin \left(\lambda_{j}-i \eta / 2\right)}\right)^{L}=\prod_{k \neq j} \frac{\sin \left(\lambda_{j}-\lambda_{k}+i \eta\right)}{\sin \left(\lambda_{j}-\lambda_{k}-i \eta\right)}
$$

String solutions:

$$
H_{X X Z}=\sum_{j=1}^{L}\left\{\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right\}
$$

Bethe Ansatz equations for $\Delta=\cosh (\eta)>1$:

$$
e^{i p_{j} L}=\left(\frac{\sin \left(\lambda_{j}+i \eta / 2\right)}{\sin \left(\lambda_{j}-i \eta / 2\right)}\right)^{L}=\prod_{k \neq j} \frac{\sin \left(\lambda_{j}-\lambda_{k}+i \eta\right)}{\sin \left(\lambda_{j}-\lambda_{k}-i \eta\right)}
$$

String solutions:

Densities of roots: $\rho_{\mathrm{r}, \mathrm{k}}(\lambda)$
The number ΔN of k-strings with centers between λ and $\lambda+\Delta \lambda$: $\Delta N=L \rho_{\mathrm{r}, k}(\lambda) \Delta \lambda / 2 \pi$.
Densities of holes: $\rho_{\mathrm{h}, k}(\lambda)$.
They satisfy

where

Densities of roots: $\rho_{\mathrm{r}, k}(\lambda)$
The number ΔN of k-strings with centers between λ and $\lambda+\Delta \lambda$: $\Delta N=L \rho_{\mathrm{r}, k}(\lambda) \Delta \lambda / 2 \pi$.

Densities of holes: $\rho_{\mathrm{h}, \mathrm{k}}(\lambda)$.
They satisfy

$$
\rho_{\mathrm{r}, k}+\rho_{\mathrm{h}, k}=\delta_{k, 1} d+d \star\left(\rho_{\mathrm{h}, k-1}+\rho_{\mathrm{h}, k+1}\right),
$$

where

$$
\begin{aligned}
(f \star g)(u) & =\int_{-\pi / 2}^{\pi / 2} \frac{d \omega}{2 \pi} f(u-\omega) g(\omega) . \\
d(u) & =1+2 \sum_{n=1}^{\infty} \frac{\cos (2 n u)}{\cosh (\eta n)}
\end{aligned}
$$

Generating function for the expectation values:

$$
G_{s}(\lambda)=\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}\left\langle Q_{s, k}\right\rangle .
$$

[M. Fagotti and F. H. L. Essler, 2013]

The following holds:

$$
d \star\left(a_{s}+\rho_{\mathrm{h}, \mathrm{~s}}\right)=G_{s},
$$

[B. Wouters et. al., 2015]

Therefore:

Generating function for the expectation values:

$$
G_{s}(\lambda)=\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}\left\langle Q_{s, k}\right\rangle .
$$

[M. Fagotti and F. H. L. Essler, 2013]
The following holds:

$$
d \star\left(a_{s}+\rho_{\mathrm{h}, s}\right)=G_{s},
$$

[B. Wouters et. al., 2015]

Therefore:

Generating function for the expectation values:

$$
G_{s}(\lambda)=\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}\left\langle Q_{s, k}\right\rangle .
$$

[M. Fagotti and F. H. L. Essler, 2013]
The following holds:

$$
d \star\left(a_{s}+\rho_{\mathrm{h}, s}\right)=G_{s},
$$

[B. Wouters et. al., 2015]
Therefore:

$$
\left|\Psi_{0}\right\rangle \quad \rightarrow \quad G_{s}(\lambda) \quad \rightarrow \quad \rho_{\mathrm{h}, \mathrm{~s}}
$$

Generating function for the expectation values:

$$
G_{s}(\lambda)=\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}\left\langle Q_{s, k}\right\rangle .
$$

[M. Fagotti and F. H. L. Essler, 2013]
The following holds:

$$
d \star\left(a_{s}+\rho_{\mathrm{h}, s}\right)=G_{s},
$$

[B. Wouters et. al., 2015]
Therefore:

$$
\begin{aligned}
& \left|\Psi_{0}\right\rangle \quad \rightarrow \quad G_{s}(\lambda) \quad \rightarrow \quad \rho_{\mathrm{h}, \mathrm{~s}} \\
& \rho_{\mathrm{h}, \mathrm{~s}} \quad \rightarrow \quad \rho_{\mathrm{r}, \mathrm{~s}} \quad \rightarrow \quad\langle n| \mathcal{O}|n\rangle
\end{aligned}
$$

[M. Mestyán and BP., 2014]

Important quantities:

$$
\eta_{j}(\lambda) \equiv \frac{\rho_{h, j}(\lambda)}{\rho_{r, j}(\lambda)}=e^{\varepsilon_{j}(\lambda)}
$$

Exact solutions (at least for small j) have been derived in

- [B. Wouters et. al., 2014]
- [M. Mestyán et. al., 2014]
- [L. Piroli, E. Vernier, P. Calabrese, 2016]
- [L. Piroli, BP, E. Vernier, to be published soon]

Important quantities:

$$
\eta_{j}(\lambda) \equiv \frac{\rho_{h, j}(\lambda)}{\rho_{r, j}(\lambda)}=e^{\varepsilon_{j}(\lambda)}
$$

Exact solutions (at least for small j) have been derived in

- [B. Wouters et. al., 2014]
- [M. Mestyán et. al., 2014]
- [L. Piroli, E. Vernier, P. Calabrese, 2016]
- [L. Piroli, BP, E. Vernier, to be published soon]

Y-system: $(\Delta=\cosh (\eta))$

$$
\eta_{j}(\lambda+i \eta / 2) \eta_{j}\left(\lambda_{j}-i \eta / 2\right)=\left(1+\eta_{j-1}(\lambda)\right)\left(1+\eta_{j+1}(\lambda)\right)
$$

Y-system: $(\Delta=\cosh (\eta))$

$$
\eta_{j}(\lambda+i \eta / 2) \eta_{j}\left(\lambda_{j}-i \eta / 2\right)=\left(1+\eta_{j-1}(\lambda)\right)\left(1+\eta_{j+1}(\lambda)\right)
$$

- Holds for thermal states
- Was assumed for two-site product states
- Does NOT hold for quenches from certain 4-site product states, such as

[L. Piroli, E. Vernier, P. Calabrese, 2016]
- Is related to the structure of overlaps
- Allows for the computation of higher η_{j} efficiently

Y-system: $(\Delta=\cosh (\eta))$

$$
\eta_{j}(\lambda+i \eta / 2) \eta_{j}\left(\lambda_{j}-i \eta / 2\right)=\left(1+\eta_{j-1}(\lambda)\right)\left(1+\eta_{j+1}(\lambda)\right)
$$

- Holds for thermal states
- Was assumed for two-site product states
- Does NOT hold for quenches from certain 4-site product states, such as
[L. Piroli, E. Vernier, P. Calabrese, 2016]
- Is related to the structure of overlaps
- Allows for the computation of higher η_{j} efficiently

Y-system: $(\Delta=\cosh (\eta))$

$$
\eta_{j}(\lambda+i \eta / 2) \eta_{j}\left(\lambda_{j}-i \eta / 2\right)=\left(1+\eta_{j-1}(\lambda)\right)\left(1+\eta_{j+1}(\lambda)\right)
$$

- Holds for thermal states
- Was assumed for two-site product states
- Does NOT hold for quenches from certain 4-site product states, such as

$$
\left|\Psi_{0}\right\rangle=\prod_{j=1}^{L / 4}|\uparrow \uparrow \downarrow \downarrow\rangle
$$

[L. Piroli, E. Vernier, P. Calabrese, 2016]

- Is related to the structure of overlaps
- Allows for the computation of higher η_{j} efficiently

Y-system: $(\Delta=\cosh (\eta))$

$$
\eta_{j}(\lambda+i \eta / 2) \eta_{j}\left(\lambda_{j}-i \eta / 2\right)=\left(1+\eta_{j-1}(\lambda)\right)\left(1+\eta_{j+1}(\lambda)\right)
$$

- Holds for thermal states
- Was assumed for two-site product states
- Does NOT hold for quenches from certain 4-site product states, such as

$$
\left|\Psi_{0}\right\rangle=\prod_{j=1}^{L / 4}|\uparrow \uparrow \downarrow \downarrow\rangle
$$

[L. Piroli, E. Vernier, P. Calabrese, 2016]

- Is related to the structure of overlaps
- Allows for the computation of higher η_{j} efficiently

Y-system: $(\Delta=\cosh (\eta))$

$$
\eta_{j}(\lambda+i \eta / 2) \eta_{j}\left(\lambda_{j}-i \eta / 2\right)=\left(1+\eta_{j-1}(\lambda)\right)\left(1+\eta_{j+1}(\lambda)\right)
$$

- Holds for thermal states
- Was assumed for two-site product states
- Does NOT hold for quenches from certain 4-site product states, such as

$$
\left|\Psi_{0}\right\rangle=\prod_{j=1}^{L / 4}|\uparrow \uparrow \downarrow \downarrow\rangle
$$

[L. Piroli, E. Vernier, P. Calabrese, 2016]

- Is related to the structure of overlaps
- Allows for the computation of higher η_{j} efficiently

Surprising results in [E. Ilievski, E. Quinn, J-S. Caux, arXiv:1610.06911]

$$
\rho \sim \exp \left(\sum_{s} \int d \lambda \beta_{s}(\lambda) Q_{s}(\lambda)\right),
$$

where

$$
Q_{s}(\lambda)=\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} Q_{s, k}
$$

Surprising results in [E. Ilievski, E. Quinn, J-S. Caux, arXiv:1610.06911]

$$
\rho \sim \exp \left(\sum_{s} \int d \lambda \beta_{s}(\lambda) Q_{s}(\lambda)\right),
$$

where

$$
Q_{s}(\lambda)=\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} Q_{s, k}
$$

It is derived:

$$
\eta_{j}(\lambda+i \eta / 2) \eta_{j}\left(\lambda_{j}-i \eta / 2\right)=e^{\beta_{j}(\lambda)}\left(1+\eta_{j-1}(\lambda)\right)\left(1+\eta_{j+1}(\lambda)\right)
$$

If the Y-system holds: All $\beta_{s}(\lambda)=0$!

Surprising results in [E. Ilievski, E. Quinn, J-S. Caux, arXiv:1610.06911]

$$
\rho \sim \exp \left(\sum_{s} \int d \lambda \beta_{s}(\lambda) Q_{s}(\lambda)\right),
$$

where

$$
Q_{s}(\lambda)=\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} Q_{s, k}
$$

It is derived:

$$
\eta_{j}(\lambda+i \eta / 2) \eta_{j}\left(\lambda_{j}-i \eta / 2\right)=e^{\beta_{j}(\lambda)}\left(1+\eta_{j-1}(\lambda)\right)\left(1+\eta_{j+1}(\lambda)\right)
$$

If the Y-system holds: All $\beta_{s}(\lambda)=0$!

Solution: Truncated GGE!

There exists a series of tGGE density matrices $\rho_{N}, N=1 \ldots \infty$ such that all local correlations evaluated using them tend to their physical values.

$$
\rho_{N} \sim \exp \left(\sum_{s=1}^{N_{s}} \sum_{j=1}^{N_{d}} \beta_{s, j}^{(N)} Q_{s, j}\right)
$$

(this is a theorem... more or less)

The $\left\langle\sigma_{1}^{z} \sigma_{3}^{y}\right\rangle$ correlator, Dimer quench, $\Delta=4, \rho_{N} \sim \exp \left(\sum_{s, j=1}^{N} \beta_{s, j}^{(N)} Q_{s, j}\right)$

How does the proof work?
Generalized TBA for the density matrix $\rho_{N} \sim \exp \left(\sum_{s, j=1}^{N} \beta_{s, j}^{N} Q_{s, j}\right)$

$$
\log \eta_{j}^{N}=\delta_{j \leq N} \sum_{k=1}^{N} \beta_{j, k}^{N} d^{(k)}+d \star\left(\log \left(1+\eta_{j-1}^{N}\right)+\log \left(1+\eta_{j+1}^{N}\right)\right)
$$

For the true η_{j} functions we can find the desired sources f_{j} from the integrals

$$
\log \eta_{j}=f_{j}+d \star\left(\log \left(1+\eta_{j-1}\right)+\log \left(1+\eta_{j+1}\right)\right)
$$

We want: $\eta_{j}^{N} \rightarrow \eta_{j}$, therefore the source terms should match

How does the proof work?
Generalized TBA for the density matrix $\rho_{N} \sim \exp \left(\sum_{s, j=1}^{N} \beta_{s, j}^{N} Q_{s, j}\right)$

$$
\log \eta_{j}^{N}=\delta_{j \leq N} \sum_{k=1}^{N} \beta_{j, k}^{N} d^{(k)}+d \star\left(\log \left(1+\eta_{j-1}^{N}\right)+\log \left(1+\eta_{j+1}^{N}\right)\right)
$$

For the true η_{j} functions we can find the desired sources f_{j} from the integrals

$$
\log \eta_{j}=f_{j}+d \star\left(\log \left(1+\eta_{j-1}\right)+\log \left(1+\eta_{j+1}\right)\right)
$$

We want: $\eta_{j}^{N} \rightarrow \eta_{j}$, therefore the source terms should match

How does the proof work?
Generalized TBA for the density matrix $\rho_{N} \sim \exp \left(\sum_{s, j=1}^{N} \beta_{s, j}^{N} Q_{s, j}\right)$

$$
\log \eta_{j}^{N}=\delta_{j \leq N} \sum_{k=1}^{N} \beta_{j, k}^{N} d^{(k)}+d \star\left(\log \left(1+\eta_{j-1}^{N}\right)+\log \left(1+\eta_{j+1}^{N}\right)\right)
$$

For the true η_{j} functions we can find the desired sources f_{j} from the integrals

$$
\log \eta_{j}=f_{j}+d \star\left(\log \left(1+\eta_{j-1}\right)+\log \left(1+\eta_{j+1}\right)\right)
$$

We want: $\eta_{j}^{N} \rightarrow \eta_{j}$, therefore the source terms should match

$$
\sum_{k=1}^{N} \beta_{j, k}^{N} d^{(k)} \rightarrow f_{j}
$$

It works even if we leave out charges!

The Y -system relation is satisfied at each truncation:

$$
\eta_{j}^{N}(\lambda+i \eta / 2) \eta_{j}^{N}\left(\lambda_{j}-i \eta / 2\right)=\left(1+\eta_{j-1}^{N}(\lambda)\right)\left(1+\eta_{j+1}^{N}(\lambda)\right)
$$

Yet it can be broken for the limit $\eta_{j}=\lim _{N \rightarrow \infty} \eta_{j}^{N}$!

