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Black hole = (true) singularity + event horizon
From Newtonian gravity: vesc =

√
2GMr−1

Intro: flat spacetime
ds2 = c2dτ2 = −c2dt2 + dx2 + dy2 + dz2 = −c2dt2 + dr2 + r2

(
dθ2 + sin2 dφ2

)
The presence of energy (eg. mass) curves the spacetime, ex.
ds2 = −f (r) c2dt2 + g (r)−1 dr2 + r2

(
dθ2 + sin2 dφ2

)
The simplest non-flat solution to the vacuum Einstein equation: Schwarzschild

ds2 = −
(

1−
2GM
c2r

)
c2dt2 +

dr2(
1− 2GM

c2r

) + r2
(

dθ2 + sin2 dφ2
)
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What if black holes thermodynamically dead ?

The second law of thermodynamics states that the total entropy can never
decrease over time for an isolated system, i.e. δS ≥ 0.

Somehow, there should be an entropy associated to the black hole whose change
follows the conservation of energy.
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Black holes mechanics and thermodynamics

The conservation of energy for black holes: δM = (κ/8π)δAH +ΩHδJ; Bardeen,
Carter, Hawking, 1973.

1st law of thermodynamics: δE = TδS−PδV .

Black hole mechanics and thermodynamics relations,

Bekenstein-Hawking entropy: SBH = ABH
4 .

Black hole temperature: TH = κ
2π .
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Hawking original derivation of BH radiation

Requires familiarity on QFT in curved background..

Φ =
∑

j

{
fj âj + f̄j â

†
j

}
→
∑

j

{
pj b̂j + p̄j b̂

†
j + qj ĉj + q̄j ĉ

†
j

}

∇2Φ = 0
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Schrodinger eqtn.
~2

2m
∇2Ψ + (E − U) Ψ = 0

One can employ the ansatz Ψ ∼ eiS(x)/~, where the function

S(x) = S0 +
(

~
i

)
S1 +

(
~
i

)2
S2 + . . .

If |dλ/dx | � 1, or possibly in case of large momentum case, we can have the
solution from S0

2

Ψ =
C+√

p
exp

(
i
~

∫
pdx

)
+

C−√
p

exp
(
−i
~

∫
pdx

)
For a time dependent Ψ, we have S0 = −Et ±

∫
pdx , i.e. the mechanical action of

the particle; − ∂S
∂t = E , ∂S

∂x = p.

In case of E < U, Ψ =
C+√
|p|

exp
(

1
~
∫
|p| dx

)
+

C−√
p exp

(
−1
~
∫
|p| dx

)
, or by

taking Im
∫

pdx .

2p =
√

2m (E − U), Landau and Lifshitz , Quantum Mechanics , Non-Relativistic Theory.
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Tunneling process is the common way to explain radiation.

Radial: dθ = dφ = 0 and null: ds2 = 0.

Schwarzschild metric

ds2 = −
(

1−
2m
r

)
dt̃2 +

(
1−

2m
r

)−1
dr2 + r2

(
dθ2 + sin2 θdφ2

)
We need a coordinate that is not singular at the horizon, for example Painleve

t = t̃ + 2
√

2mr + 2m ln

(√
r −
√

2m
√

r +
√

2m

)

ds2 = −
(

1−
2m
r

)
dt2 + 2

√
2m
r

dtdr + dr2 + r2
(

dθ2 + sin2 θdφ2
)

The coordinate singularity r = 2m is removed, the true singularity r = 0 is still
there, and the spacetime is stationary.
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The in(out) [−(+)] null radial geodesic:

0 = −
(

1−
2m
r

)
dt2 + 2

√
2m
r

dtdr + dr2 →
dr
dt

= ±1−
√

2m
r

Near the horizon, where the tunneling process takes place, we can have

ṙ ≈
(r − 2m)

4m

Imaginary part of the action for an outgoing particle from rin to rout

ImS = Im

rout∫
rin

pdr = Im

rout∫
rin

p∫
0

dp′dr = Im

rout∫
rin

E∫
0

dH
ṙ

dr

where the Hamilton’s equation ṙ = dH
dp

∣∣∣
r

has been employed3.

Using WKB approach: the particle has tunneling rate e−2~−1ImS where
ImS = 4πEM.

Expression e−2~−1ImS takes the form of Boltzmann factor with energy E and
(Hawking) temperature TH = 1/(8πM).

3Note that in doing integration over r , there is a pole at r = 2m.
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A little bit on WKB and particle in a black hole background

ds2 = −
(

1−
2m
r

)
dt2 +

(
1−

2m
r

)−1
dr2 + r2

(
dθ2 + sin2 θdφ2

)

A particle losses its energy as it moves toward infinity from near a black hole.
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Second method: complex path.

Allow the spacetime coordinate to be complex, i.e. x = Rex + iImx , where x is
four-coordinate, (t , r , θ, φ).

We can work in the original Schwarzschild metric without Painleve transformation.

Massless scalar particle in curved background

gµν∇µ∇νΦ (x) = 0

Use WKB ansatz Φ = eiS(x)/~, where S(x) = S0 +
(

~
i

)
S1 +

(
~
i

)2
S2 + . . .

Eqtn. for S):(
∂S0

∂t

)2
=

(
1−

2m
r

)2 (∂S0

∂r

)2
→

∂S0

∂t
= ±

(
1−

2m
r

)
∂S0

∂r
(4.1)

where +(−) associate to in(out)going particles.

Lets write the action: S0 = Et + S̃0(r), so eq (4.1) can be read as

∂S
∂r

= ±
Er

r − 2m
→ S̃0 = ±

∫ rout

rin

Er dr
r − 2m
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Wave solutions:

Φin = exp

− i
~

Et + E

rout∫
rin

rdr
r − 2m


 , Φout = exp

− i
~

Et − E

rout∫
rin

rdr
r − 2m




Condition from classical limit, i.e. ~→ 0, |Φin|2 = 1, yields Imt = −Im
rout∫
rin

rdr
r−2m .

Consequently,

Pout = |Φout |2 = exp

−4E
~

Im

rout∫
rin

rdr
r − 2m

 = exp
(
−

8πME
~

)

Using the principle4 of “detailed balance” [Hartle and Hawking, Phys.Rev. D13
(1976)] Pout = e−E/TH Pin, we have TH = ~

8πM .

4Or simply consider the Boltzmann factor e−E/T related to Pout .
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