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Why pure state stat. phys.? I

Stat. phys. was developed before QM

We fix some issues of classical SM using QM (black body radiation, Gibbs paradox etc.),
but what if a more fundamental “derivation" is necessary? (magnetic systems etc.)

Even if we dont worry about potential problems, QM can still provide a new perspective on SM.

"Although the subject has been under development for many years, we still do not have a complete and satisfactory
theory, in the sense that there is no line of argument proceeding from the laws of microscopic mechanics to
macroscopic phenomena, that is generally regarded by physicists as convincing in all respects.”

E. T. Jaynes, Phys. Rev. 106, 620 (1957)

"Statistical physics has not yet developed a set of generally accepted formal axioms."

"[It] has developed into a number of different schools, each with its own programme and technical apparatus. Unlike
quantum theory or relativity, this field lacks a common set of assumptions that is accepted by most of the
participants [..] But one common denominator seems to be that nearly all schools claim the founding fathers, Maxwell,
Boltzmann and Gibbs as their champions.

J. Uffink, Compendium of the foundations of statistical physics (2006)

e ensembles: when and why do they work?

e classical SM: subjective lack of knowledge, coarse graining. In QM we have objective lack of knowledge!
(Jaynes’ Bayesian approach in the quantum world?)

e ergodicity: time scale is exp. large, very hard fo prove



Take home message l

Individual quantum states can exhibit statis
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Recommended literature

* C. Gogolin, J. Eisert, Rep. Prog. Phys. 79, 056001 (2016): rigorous theorems and bounds
C. Gogolin, Ph.D. thesis, arXiv:1003.5058
J. Gemmer J, M. Michel, G. Mahler, "Quantum thermodynamics" (2009)

A. Polkovnikov et al., Rev. Mod. Phys. 83 863 (2011): many-body physics

M. A. Cazalilla, M. Rigol, New J. Phys. 12 55006 (2010) (editorial of focus issue)
L. D'Alessio et al., Adv. Phys. 65, 239 (2016): many-body systems, ETH and more
J. Eisert, M. Friesdorf, C. Gogolin, Nat. Phys. 11, 124 (2015): many body systems

Remark: experiments! (e.g. cold atoms)

A. Kaufman et al.,, Science 353, 794 (2016) T. Kinoshita et al., Nature 440, 900 (2006)



Typicality
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Almost all pure states of a system is such that its (small enough) subsystems are in equilibrium.

Popescu et al., Nat. Phys. 2, 754 (2007)

Theorem 1 For a randomly chosen state |¢) € Hr C
Hs ® Hg and arbitrary € > 0, the distance between the
reduced density matrix of the system ps = Tr(|¢)X¢|) and
the canonical state Qg = Tr &R is given probabilistically

by

Prob||lps — Qsll; > n] <7/, (9)
where
| d
77 = € + %7 (10)
dp
77’ = 2exp (—CdREZ). (11)

In these expressions, C is a positive constant (given by
C = (1873)71), ds and dr are the dimensions of Hs and
Hr respectively, and d§ is a measure of the effective size
of the environment, given by
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(12)

E. Schrodinger, Ann. Phys. 388, 956 (1927); "Statistical Thermodynamics" (1952)
J. Neumann, Z. Phys. 57, 30 (1929); Eur. Phys. J. H 35, 201 (2010); S. Goldstein et al., Proc. Roy. Soc. A 466, 3203 (2010);
S. Goldstein et al., "Canonical Typicality"”, Phys. Rev. Lett. 96, 50403 (2006) (Aharonov!)

Objective "lack of knowledge"
role of entanglement

P. Reimann, Phys. Rev. Lett. 99, 160404 (2007):

generalizes the distribution of states we draw from
the state of the full system is indistinguishable from the
average state with reasonable measurements

Instead of simply postulating that a certain ensemble yields a reasonable description of
a certain physical situation, typicality shows, in a mathematically very well-defined way;,
when and why details do not matter. If most states anyway exhibit the same or very
similar properties, then this does provide a heuristic, but pretty convincing, argument in
favour of the applicability of ensembles. It is hence an argument supporting a description
of large systems with ensembles.




Equilibration

Non-equilibrium states are non-generic

A time dependent property equilibrates on average if for most times during the evolution

its value is close to some equilibrium value.

Te[p(t)A] = Y (nlp(0)|m)(m|Aln)e™"En=Em)t — % {n|p(0)[n)(n| Aln) = Tr[wA] W= pun(0)|n)(n

n,m

Theorem 1 (Generalization of Reimann’s result [1]). Consider a d-dimensional quantum
system evolving under a Hamiltonian H = Z" E,P,, where P, is the projector onto the
eigenspace with energy E,. Denote the system’s density operator by p(t), and its time-averaged
state by w = (p(t)),. If H has non-degenerate energy gaps, then for any operator A,

2 2
A4 _ Al

< (2)
4deff deff

o} = (ltr(Ap (1)) — tr(Aw)?), <
where || A|| is the standard operator norm',
A(A)EZmiCn A —cl|, 3)
ce

and
|

=S @R ()

Al = sup{/(v|ATA|v) : |v) € H with (v|v) = 1}, or equivalently || A|| is the largest singular value of A.
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Corollary 1. Consider a quantum system evolving under a Hamiltonian with non-degenerate
energy gaps. The average distinguishability of the system’s state p(t) from w, given a finite set
of measurements M, satisfies

2 mem 2 AM,) _ N(M)
D t ) t< < b
(Drm(p(1), ) N N

where N (M) is the total number of outcomes for all measurements in M.

| &
(D(ps(t), ws)), < 5 def

(14)

P. Reimann, Phys. Rev. Lett. 101, 190403 (2008)
Linden et al., Phys. Rev. E 79, 061103 (2009)

A. Short, New J. Phys. 12, 053009 (2011)

Subsystem is completely general

* Energy can be non-extensive
Interactions can be strong
Eigenvalues and form of eigenvectors
do not matter

The last statement about subsystems
does not have a classical analogue.

Subsystem equilibrates to the same state for
almost all initial states of the bath.



Thermalization I
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Equilibration

subsystem initial state independence

bath state independence

diagonal form of subsystem equilibrium state (decoherence)
Gibbs state

N

M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008) (1100+ citations and counting)

5 hardcore bosons on a 2D lattice of 21 sites (dim=20349)

if A thermalizes:
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Thermalization and ETH
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M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008)

a Non-integrable
2.0 T T T T T T

i’ Eigenstate Thermalization Hypothesis:

| ’rhe expectation value of an observable in an energy-E eigenstate

Diagonal/
| Microcanonical
- — Eigenstate a

— —Eigenstate b

J. M. Deutsch, Phys. Rev. A 43, 2046 (1991); M. Srednicki, Phys. Rev. E 50, 888 (1994)
R. Jensen, R. Shankar, Phys. Rev. Lett. 54, 1879 (1985)
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Thermalization and ETH
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System size dependence of the distribution of eigenstate expectation values

Variance scales as [dim(#)] /2 Even outliers approach the average
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: Tilted Ising chain, h.c. bosons
XXZ spin ladder

strong ETH seems fo hold: all eigenstates are thermal

W. Beugeling, R. Moessner, M. Haque, Phys. Rev. E 89, 042112 (2014) H. Kim, T. Ikeda, D. Huse, Phys. Rev. E 90, 052105 (2014)



Thermalization and ETH

Govern the temporal fluctuations:

Off-diagonal matrix elements

o = ([tr(Ap(t)) — tr(Aw)[*)¢ < maxpn|(n|Ajm)?
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M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008) Aap Aap Aap

XXZ spin ladder

A=5583,,

W. Beugeling, R. Moessner, M. Haque, Phys. Rev. E 91, 012144 (2015)

2 . —1
. . . |Anm| ~ [dlm(H)]
ETH can be formulated as an ansatz for the matrix elements of physical observables in
the basis of the eigenstates of a Hamiltonian [28]:

O = O (E) un + ¢ SF)2 1 (E,w) Ropn (54)
where E = (Ep+Ep)/2, w = Ep— By, and S(E) is the thermodynamic entropy at energy
E. Crucially, O (E) and fo (E,w) are smooth functions of their arguments, the value

@) (E) is identical to the expectation value of the micro-canonical ensemble at energy

E and R,,, is a random real or complex variable with zero mean and unit variance
2 _ 2 _
(RZ2, =1or |R,,|*>=1).




Time scale of equilibration |

H. Wilming et al,, arXiv:1704.06291

ers . . T. R. de Oliveira et al., arXiv:1704.06646
Equilibration as dephasing

AA(t) = Te[p() Al = (Tr[p(t) A)e = D> zae’™, za = > (n|p(0)m){m|An)
A0 Ep—En=A

As AA(t) is large initially, the distribution of the complex numbers za must be anisotropic. The dispersion in
the gaps makes them dephase, which leads to an isotropic configuration and a small AA(%).

a1 Naively, T ~ 27/(Amax — Amin) . Better estimate:
5
0 0 i D) 3 4 time ¢ V7t ZA|ZA‘2A2
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Example: uniformly distributed gaps, za follow a normal distribution independent of L

Need: smooth distribution za independent of L

Spectrum: distribution of gaps is roughly Gaussian of width v'L, independent of integrability (1)

Initial state: can argue that most of the (n|p(0)|m) are small
Observable: for local H and A: [(Ei|A|E;)| < [|A]l e (#5172 Or invoke ETH form (without the "T").



Thermalization and ETH
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Which operators satisfy ETH?  Local? "Few-body"?

J. R. Garrison, T. Grover, "Does a single eigenstate encode the full Hamiltonian?", arXiv:1503.00729

"We conjecture and provide numerical evidence that ETH holds for all operators within a subsystem
when the volume Vg of subsystem S satisfies Vg <« V. [...] We also explore the more general condition Vg < V/2
and show that even in this case, ETH holds for a large class of operators.”

"ETH allows one to calculate thermodynamical quantities as well as correlators at all temperatures/
energy densities using only a single eigenstate.”
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Figure 15: Equal time correlators for an L = 21 system plotted against inverse temperature 8. The blue dots denote the
expectation value with respect to each eigenstate, the dashed cyan curve plots the expectation value in the canonical ensemble,
and the red curve plots the expectation value predicted from a single eigenstate at 8o = 0.3 (yellow dot) by raising the La = 4
density matrix to the power 8/8o and rescaling it to have unit trace.
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