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Stat. phys. was developed before QM

We fix some issues of classical SM using QM (black body radiation, Gibbs paradox etc.),

but what if a more fundamental "derivation" is necessary? (magnetic systems etc.)

"Statistical physics has not yet developed a set of generally accepted formal axioms."  
"[It] has developed into a number of different schools, each with its own programme and technical apparatus. Unlike 
quantum theory or relativity, this field lacks a common set of assumptions that is accepted by most of the 
participants […] But one common denominator seems to be that nearly all schools claim the founding fathers, Maxwell, 
Boltzmann and Gibbs as their champions. 

J. Uffink, Compendium of the foundations of statistical physics (2006)

"Although the subject has been under development for many years, we still do not have a complete and satisfactory 
theory, in the sense that there is no line of argument proceeding from the laws of microscopic mechanics to 
macroscopic phenomena, that is generally regarded by physicists as convincing in all respects."

E. T. Jaynes, Phys. Rev. 106, 620 (1957)

• ensembles: when and why do they work?

• classical SM: subjective lack of knowledge, coarse graining. In QM we have objective lack of knowledge!  

(Jaynes’ Bayesian approach in the quantum world?)

• ergodicity: time scale is exp. large, very hard to prove

Why pure state stat. phys.?

Even if we don’t worry about potential problems, QM can still provide a new perspective on SM.



Individual quantum states can exhibit statistical properties.

Recommended literature
• C. Gogolin, J. Eisert, Rep. Prog. Phys. 79, 056001 (2016): rigorous theorems and bounds

• C. Gogolin, Ph.D. thesis, arXiv:1003.5058

• J. Gemmer J, M. Michel, G. Mahler, "Quantum thermodynamics" (2009) 

• A. Polkovnikov et al., Rev. Mod. Phys. 83 863 (2011): many-body physics

• M. A. Cazalilla, M. Rigol, New J. Phys. 12 55006 (2010)   (editorial of focus issue)

• L. D’Alessio et al., Adv. Phys. 65, 239 (2016): many-body systems, ETH and more

• J. Eisert, M. Friesdorf, C. Gogolin, Nat. Phys. 11, 124 (2015): many body systems

Remark: experiments! (e.g. cold atoms)

A. Kaufman et al., Science 353, 794 (2016)
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A quantum Newton’s cradle
Toshiya Kinoshita1, Trevor Wenger1 & David S. Weiss1

It is a fundamental assumption of statistical mechanics that a
closed system with many degrees of freedom ergodically samples
all equal energy points in phase space. To understand the limits of
this assumption, it is important to find and study systems that are
not ergodic, and thus do not reach thermal equilibrium. A few
complex systems have been proposed that are expected not to
thermalize because their dynamics are integrable1,2. Some nearly
integrable systems of many particles have been studied numeri-
cally, and shown not to ergodically sample phase space3. However,
there has been no experimental demonstration of such a system
with many degrees of freedom that does not approach thermal
equilibrium. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 87Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.
Until now, however, the time evolution of out-of-equilibrium 1D
Bose gases has been a theoretically unsettled issue4–6, as practical
factors such as harmonic trapping and imperfectly point-like
interactions may compromise integrability. The absence of damp-
ing in 1D Bose gases may lead to potential applications in force
sensing and atom interferometry.
To see qualitatively why 1D gases might not thermalize, consider

the elastic collision of two isolated, identical mass classical particles in
one dimension. Energy and momentum are conserved only if they
simply exchange momenta. Clearly, the momentum distribution of a
1D ensemble of particles will not be altered by such pairwise
collisions. The well-known behaviour of Newton’s cradle (see
Fig. 1a) is most easily understood in this way. Even when several
balls are simultaneously in contact, particles in an idealized Newton’s
cradle just exchange specific momentum values, though the expla-
nation is more subtle7. Generalization of the Newton’s cradle to
quantum mechanical particles lends it a ghostly air. Rather than just
reflecting off each other, colliding particles can also transmit through
each other. When the particles are identical, the final states after
transmission and reflection are indistinguishable.
In general, correlations and overlap among 1D Bose gas wavefunc-

tions complicate the picture of independent particles colliding as in a
Newton’s cradle. In fact, there are circumstances in which 1D
momentum distributions are known to change in time. For example,
when weakly coupled bosons are released from a trap, the conversion
of mean field energy to kinetic energy changes the momentum
distribution. In the Tonks–Girardeau limit of infinite strength
interactions8, although the 1D bosons interact locally like non-
interacting fermions, their momentum distribution is not fermio-
nic9,10. When a Tonks–Girardeau gas is released from a trap and
expands in one dimension, its momentum distribution evolves into
that of a trapped Fermi gas11–13. The quantum Newton’s cradle view
of particles colliding with each other and either reflecting or
transmitting can only be applied when the kinetic energy of the
collision greatly exceeds the energy per atom at zero temperature at

the prevailing density14. The collisions that we study satisfy this
criterion well. Our observations extend from the Tonks–Girardeau
regime, where only pairwise collisions can occur15, to the intermediate
coupling regime, where there can be three- (or more) body col-
lisions15–17. In both regimes, atoms that are set oscillating and colliding
in a trap do not appreciably thermalize during our experiment.
We start our experiments with a Bose–Einstein condensate (BEC)

loaded into the combination of a blue-detuned two-dimensional
(2D) optical lattice and a red-detuned crossed dipole trap (see
Methods). The combination of light trapsmakes a 2D array of distinct,
parallel Bose gases, with the 2D lattice providing tight transverse
confinement and the crossed dipole trap providing weak axial trap-
ping11. The dynamics within each tube of the 2D array are strictly 1D
because the lowest transverse excitation, "q r (where q r/2p ¼ 67 kHz
is the transverse oscillation frequency), far exceeds all other energies in
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Figure 1 |Classical and quantumNewton’s cradles. a, Diagram of a classical
Newton’s cradle. b, Sketches at various times of two out of equilibrium
clouds of atoms in a 1D anharmonic trap,U(z). At time t ¼ 0, the atoms are
put into a momentum superposition with 2"k to the right and 2"k to the
left. The two parts of the wavefunction oscillate out of phase with each other
with a period t. Each atom collides with the opposite momentum group
twice every full cycle, for instance, at t ¼ 0 and t/2. Anharmonicity causes
each group to gradually expand, until ultimately the atoms have fully
dephased. Even after dephasing, each atom still collides with half the other
atoms twice each cycle.
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T. Kinoshita et al., Nature 440, 900 (2006)

Take home message



Typicality

• E. Schrödinger, Ann. Phys. 388, 956 (1927); "Statistical Thermodynamics" (1952)

• J. Neumann, Z. Phys. 57, 30 (1929); Eur. Phys. J. H 35, 201 (2010); S. Goldstein et al., Proc. Roy. Soc. A 466, 3203 (2010);

• S. Goldstein et al., "Canonical Typicality", Phys. Rev. Lett. 96, 50403 (2006)    (Aharonov!)

• Popescu et al., Nat. Phys. 2, 754 (2007)

Almost all pure states of a system is such that its (small enough) subsystems are in equilibrium. 

• Objective "lack of knowledge"

• role of entanglement

P. Reimann, Phys. Rev. Lett. 99, 160404 (2007):

• generalizes the distribution of states we draw from

• the state of the full system is indistinguishable from the  

average state with reasonable measurements



Equilibration

Non-equilibrium states are non-generic

A time dependent property equilibrates on average if for most times during the evolution 
its value is close to some equilibrium value.

P. Reimann, Phys. Rev. Lett. 101, 190403 (2008)

Linden et al., Phys. Rev. E 79, 061103 (2009)

A. Short, New J. Phys. 12, 053009 (2011)
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• Subsystem is completely general

• Energy can be non-extensive

• Interactions can be strong

• Eigenvalues and form of eigenvectors  

do not matter

The last statement about subsystems

does not have a classical analogue.

Subsystem equilibrates to the same state for 
almost all initial states of the bath.



Thermalization

1. Equilibration

2. subsystem initial state independence

3. bath state independence

4. diagonal form of subsystem equilibrium state  (decoherence)

5. Gibbs state

M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008)       (1100+ citations and counting)

5 hardcore bosons on a 2D lattice of 21 sites (dim=20349)

if A thermalizes:

?

3 possible explanations…



M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008)

Thermalization and ETH

Eigenstate Thermalization Hypothesis: 

the expectation value of an observable in an energy-E eigenstate

is equal to the thermal average of the observable at mean energy E

ETH suggests that classical and quantum thermal states 

have very different natures

J. M. Deutsch, Phys. Rev. A 43, 2046 (1991); M. Srednicki, Phys. Rev. E 50, 888 (1994)

R. Jensen, R. Shankar, Phys. Rev. Lett. 54, 1879 (1985)



Thermalization and ETH

System size dependence of the distribution of eigenstate expectation values 

W. Beugeling, R. Moessner, M. Haque, Phys. Rev. E 89, 042112 (2014)

XXZ spin ladder

Variance scales as [dim(H)]�1/2

H. Kim, T. Ikeda, D. Huse, Phys. Rev. E 90, 052105 (2014)

Even outliers approach the average

Tilted Ising chain, h.c. bosons

strong ETH seems to hold: all eigenstates are thermal



Thermalization and ETH

Off-diagonal matrix elements

M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008)

�2
A = h|tr(A⇢(t))� tr(A!)|2it  maxn 6=m|hn|A|mi2Govern the temporal fluctuations:

W. Beugeling, R. Moessner, M. Haque, Phys. Rev. E 91, 012144 (2015)
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Time scale of equilibration

Equilibration as dephasing
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H. Wilming et al.,       arXiv:1704.06291

T. R. de Oliveira et al., arXiv:1704.06646

As         is large initially, the distribution of the complex numbers     must be anisotropic. The dispersion in 
the gaps makes them dephase, which leads to an isotropic configuration and a small        . 
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Spectrum: distribution of gaps is roughly Gaussian of width     , independent of integrability (!)
p
L

Example: uniformly distributed gaps,     follow a normal distribution independent ofz� L

Initial state: can argue that most of the              are smallhn|⇢(0)|mi
Observable: for local    and   :H A . Or invoke ETH form (without the "T").

Need: smooth distribution     independent ofz� L



Thermalization and ETH

Which operators satisfy ETH?    Local? "Few-body"?

"We conjecture and provide numerical evidence that ETH holds for all operators within a subsystem 
when the volume    of subsystem   satisfies         . […] We also explore the more general condition       
and show that even in this case, ETH holds for a large class of operators."

SVS VS ⌧ V VS < V/2

"ETH allows one to calculate thermodynamical quantities as well as correlators at all temperatures/
energy densities using only a single eigenstate."

J. R. Garrison, T. Grover, "Does a single eigenstate encode the full Hamiltonian?",  arXiv:1503.00729


