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The set-up of this seminar series

• A central question about thermalization: Why is the Gibbs state special?

ρβ =
1
Z
e−βH , Z = Tr(e−βH).

We discuss three points:
• 1st lecture (Pure-state Statistical Physics, Márton Kormos):

It naturally emerges from subsystem expectmany-body dynamics.
• 2nd lecture (Results from Quantum Information Theory, ZZ):

It naturally emerges when we introduce actors who can apply
different unitary transformations from a given set.

• 3rd lecture (Integrable Systems, Balázs Pozsgay):
Counter-examples, Generalized Gibbs Ensembles.
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Last seminar talk: emergence of Gibbs state from unitary dynamics

• Given a Hamiltonian H and a generic pure state with finite energy
density. During the time-evolution the entanglement entropy increases
linearly in time until t ∼ `:

• The state on the local subsystems will be Gibbs states. The
entanglement entropy will play the role of thermal entropy:
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Gibbs states and the von Neumann entropy

• The Gibbs state at inverse temperature β corresponding to a Hamiltonian
H is given as

ρβ =
e−βH

Tr(e−βH)
.

• We should define a free energy functional on the set of density matrices
(corresponding inverse temperature β and Hamiltonian H)

F (ρ) = Tr(ρH)− β−1S(ρ),

such that the state that maximizes this functional is exactly the Gibbs
state ρβ .

• We have to choose S(ρ) to be the von Neumann entropy: −Trρ log ρ.
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Quantum information approach:
introducing actors who can use ancillary systems and unitaries

• The starting state ρβ = ρS ⊗ ρE (or at least ρ ≈ ρS ⊗ ρE ) that evolves
unitarily.

• Why could ρ = ρS ⊗ ρE be justified? Doesn’t that contradict our previous
set-up (the entropy is built up from the entanglement with enviroment)?
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Subsystem are not very much entangled or correlated

• Monogamy of entanglement
• For any short-ranged Gibbs there is an area law for the mutual
information of I (A : B)=S(ρA)+S(ρB)−S(ρAB) of neighboring regions
and this mutual information will even decay exponentially with the
distance (M.M. Wolf, F. Verstraete, M.B. Hastings, and J.I. Cirac, Phys. Rev. Lett. 100, 070502

(2008)).

• The above results also holds for other correlation measures:
• Negativity V. Eisler, ZZ, New J. Phys. 16 , 123020 (2014); Phys. Rev. B 93, 115148 (2016).

• Rényi mutual information: Di (ρAB‖ρA ⊗ ρB) where

D
(α)
1 (ρ ||σ)=

1
α− 1

logTr
(
ρασ1−α

)
,

D
(α)
2 (ρ ||σ)=

1
α− 1

logTr
(
σ

1−α
2α ρσ

1−α
2α

)α
.

(Martin Müller-Lennert et al, J. Math. Phys. 54, 122203 (2013); R. L. Frank, E. H. Lieb,

J. Math. Phys. 54,122201 (2013).)
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One counter-example: nonequilibrium steady state generated by a
temperature gradient

• The initial state:
ρ0 =

1
ZL

e−β`H` ⊗ 1
ZR

e−βrHr ,

• Time evolution: ρ(t) = e−itHρ0e
itH , where

H = −1
2

∞∑
m=−∞

(
c†m+1cm + c†mcm+1

)
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Violation of the area law

• Result: There is a logarithmic violation of the area law,
I (A : B) = σ log L+ k,

σ =
1
π2

[
aLi2

(
a− b

a

)
+ (1− a)Li2

(
b − a

1− a

)
+b Li2

(
b − a

b

)
+ (1− b)Li2

(
a− b

1− b

)]
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V. Eisler, Z.Zimborás, Phys. Rev. A 89, 032321 (2014),
M. Kormos, Z.Zimborás, arXiv:1612.04837 (2016).

• Similar counter examples appeared after ours:
M. Hoogeveen, B. Doyon, Nucl. Phys. B 898, 78-112 (2015), S. Ajisaka, F. Barra, B. Zunkovic, New J.
Phys. 16 033028 (2014); F. Ares, J. G. Esteve, F. Falceto, E. Burillo, J. Phys. A 47, 245301 (2014).
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Catalytic thermal operations

ρS ⊗ τ⊗n ⊗ σ → UρS ⊗ τ⊗n ⊗ σU†,
[U,HS + HR + HC ] = 0.

• Borrow a catalyst that is returned to itself (or ε close to itself).
• Thermal reservoir: add arbitrary number of copies of a thermal state τ
belonging to a Hamiltonian HR .

• Perform any unitary operation U such that [U,HS + HR + HC ].
• Perform the partial trace over the reservoir and the catalyst.
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A Zeroth Law and Gibbs states

ρS ⊗ τ⊗n ⊗ σ → UρS ⊗ τ⊗n ⊗ σU†,
[U,HS + HR + HC ] = 0.

• A type of Zeroth Law of Thermodynamics:

If we choose for τ any other form than 1
Z
e−βHR ,

then any ρS → ρ′S transformation is possible.
(F. Brandao, M. Horodecki, J. Oppenheim, J. Rennes and R.W. Spekkens, Phys. Rev. Lett. 111, 250404
(2013).)
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A Second Law and the von Neumann entropy

• A type of Second Law of Thermodynamics:
If in the above set-up a ρS → ρ′S transformation is possible, then

F (ρ′S) ≤ F (ρS)

Tr(HSρ
′
S)− β−1S(ρ′S) ≤ Tr(HSρS)− β−1S(ρS)

β−1D(ρ′S‖ρβ)− β−1 logZ ≤ β−1D(ρS‖ρβ)− β−1 logZ

(F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, PNAS 112, 3275 (2015).)
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The Second Laws of Thermodynamics

• However, the decrease of free energy is not the only restriction!
• Second Laws of Thermodynamics:
If in the above set-up a ρS → ρ′S transformation is possible if and only if

β−1D
(α)
1 (ρ′S‖ρβ)−β−1 logZ ≤ β−1D

(α)
1 (ρS‖ρβ)−β−1 logZ for

1
2
≤ α ≤ 1,

β−1D
(α)
2 (ρ′S‖ρβ)−β−1 logZ ≤ β−1D

(α)
2 (ρS‖ρβ)−β−1 logZ for α ≥ 1.

It is then customary to introduce

Fi (ρ‖ρβ) = D
(α)
i (ρ′S‖ρβ)−β−1 logZ .

(F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, PNAS 112, 3275 (2015).)
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Extension of the Third Law of Thermodynamics

• Nernst’s argument states that: at zero temperature, a finite size system
has an entropy S , which is independent of any external parameters X,
that is S(T ,X1)− S(T ,X2)→ 0 as the temperature T → 0.

• As the entropy at zero temperature should be the logarithm of the
ground state degeneracy, the validity of the third law is contingent on
whether the degeneracy changes for different parameters.

• By modeling a physical process using two main ingredients:
• finite information (entropy) propagation speed,
• bound on the entropy S(E) ≤ αV 1−νEν with ν ∈ (1/2, d

d+1 ),

one can derive a temperature-time bound

TS ≥
const.

t7
.

(L. Masanes and J. Oppenheim, Nature Comm. 8, 14538 (2017).)
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Quantum Computers with a Neumann Architecture
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Quantum Computers with a Neumann Architecture

• The classical Neumann architecture:

• The quantum mechanical version: Universally Programable Quantum
Computer

• One needs a program input size that scales between exp(d) and
exp(exp(d)).
(M. A. Nielsen, I. L. Chuang, Phys. Rev. Lett., 79, 321 (1997).)
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