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The set-up of this seminar series

e A central question about thermalization: Why is the Gibbs state special?

1
ps = 267’8/47 Z =Tr(e "M).

We discuss three points:
o 1st lecture (Pure-state Statistical Physics, Marton Kormos):
It naturally emerges from subsystem expectmany-body dynamics.
e 2nd lecture (Results from Quantum Information Theory, ZZ):
It naturally emerges when we introduce actors who can apply
different unitary transformations from a given set.
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Thermo-

dynamics
and

Quanturr.l

s e A central question about thermalization: Why is the Gibbs state special?
Zoltan 1

Zimboras pg = ?e76H7 Z = Tr(eiﬁH)A

We discuss three points:

o 1st lecture (Pure-state Statistical Physics, Marton Kormos):
It naturally emerges from subsystem expectmany-body dynamics.

e 2nd lecture (Results from Quantum Information Theory, ZZ):
It naturally emerges when we introduce actors who can apply
different unitary transformations from a given set.

o 3rd lecture (Integrable Systems, Balazs Pozsgay):
Counter-examples, Generalized Gibbs Ensembles.
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Last seminar talk: emergence of Gibbs state from unitary dynamics
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dynamics
Quantum e Given a Hamiltonian H and a generic pure state with finite energy
density. During the time-evolution the entanglement entropy increases

Informati-
on
linearly in time until ¢t ~ ¢:

Zoltan
Zimboras
I
<t

251

e The state on the local subsystems will be Gibbs states. The
entanglement entropy will play the role of thermal entropy:

sa(t)

G0 = At/ gy c—Atfin "
«—,

f?}
= /17

Jim Trge 0 =7
Quantm quench
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Gibbs states and the von Neumann entropy
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pPB = Tr(e—AH)
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Gibbs states and the von Neumann entropy

o The Gibbs state at inverse temperature [ corresponding to a Hamiltonian
H is given as

e PH
pPB = Tr(e—AH)

e We should define a free energy functional on the set of density matrices
(corresponding inverse temperature 3 and Hamiltonian H)

F(p) = Tr(pH) — B7S(p),

such that the state that maximizes this functional is exactly the Gibbs
state pg.
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Gibbs states and the von Neumann entropy

o The Gibbs state at inverse temperature [ corresponding to a Hamiltonian

H is given as
e AH

pPB = Tr(e—AH)

e We should define a free energy functional on the set of density matrices
(corresponding inverse temperature 3 and Hamiltonian H)

F(p) = Tr(pH) — B7S(p),

such that the state that maximizes this functional is exactly the Gibbs
state pg.
e We have to choose S(p) to be the von Neumann entropy: —Trplog p.
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Quantum information approach:

introducing actors who can use ancillary systems and unitaries
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unitarily.
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Quantum information approach:

introducing actors who can use ancillary systems and unitaries

Thermo-

Quantum

Informati-
Zoltan .

Zimborss e The starting state pg = ps ® pe (or at least p &~ ps @ pe) that evolves

unitarily.

e Why could p = ps ® pe be justified? Doesn't that contradict our previous
set-up (the entropy is built up from the entanglement with enviroment)?

5/16



Thermo-

Quantum

Informati-

on

Zoltan
Zimboras

Subsystem are not very much entangled or correlated

e Monogamy of entanglement

e For any short-ranged Gibbs there is an area law for the mutual
information of /(A : B)=5(pa)+S5(ps)—S(pas) of neighboring regions
and this mutual information will even decay exponentially with the

distance (M.M. Wolf, F. Verstraete, M.B. Hastings, and J.I. Cirac, Phys. Rev. Lett. 100, 070502

(2008)).

6/16



Thermo-

Quantum

Informati-

on

Zoltan
Zimboras

Subsystem are not very much entangled or correlated

e Monogamy of entanglement

e For any short-ranged Gibbs there is an area law for the mutual
information of /(A : B)=5(pa)+S5(ps)—S(pas) of neighboring regions
and this mutual information will even decay exponentially with the

distance (M.M. Wolf, F. Verstraete, M.B. Hastings, and J.I. Cirac, Phys. Rev. Lett. 100, 070502

(2008)).

e The above results also holds for other correlation measures:
o Negativity V. Eisler, ZZ, New J. Phys. 16 , 123020 (2014); Phys. Rev. B 93, 115148 (2016).
e Rényi mutual information: D;(pagllpa ® pg) where
1
a—1

(e l—a) ,

D§a)(p\|a): log Tr (p“o

D (ol 0)=

1—a 1—a\ @
log Tr (cr 2a po 2« ) .
a—1
(Martin Miiller-Lennert et al, J. Math. Phys. 54, 122203 (2013); R. L. Frank, E. H. Lieb,
J. Math. Phys. 54,122201 (2013).)
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One counter-example: nonequilibrium steady state generated by a

temperature gradient

e The initial state: 1 1
— —BeHy —BrH,
= —e —e ,
po Z © Zr

e Time evolution: p(t) = e ™ poe™ where

e}

1
H:_E Z (c;+1cm+c,1,cm+1)

m=—o00

’—-[=0 ’—_[>0
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Violation of the area law

e Result: There is a logarithmic violation of the area law,
I(A:B)=oclog L+ k,

o e )
+bLis (b;a> + (1 - b)Liz (a_ b)} :

09
0.1 B =0 .
:_:1 08
=2 T 0
0.08 . 7
06 "
0.06 3 05
T < ‘5
004 ) . Zo4r 2
. 03l = H o
. ] L=20
0.02 - o2l = =
o L=60
o 01 ) L=80
0 2 4 6 8 10 ° L=100
Br 0 20 40 60 80 100

V. Eisler, Z.Zimboras, Phys. Rev. A 89, 032321 (2014),
M. Kormos, Z.Zimboras, arXiv:1612.04837 (2016).
e Similar counter examples appeared after ours:
M. Hoogeveen, B. Doyon, Nucl. Phys. B 898, 78-112 (2015), S. Ajisaka, F. Barra, B. Zunkovic, New J.
Phys. 16 033028 (2014); F. Ares, J. G. Esteve, F. Falceto, E. Burillo, J. Phys. A 47, 245301 (2014).
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Catalytic thermal operations

Thermal reservoir
T,Hgp
Catalyst Catalyst

Energy Preserving Process.

5 Usec | g :
! o y/m._.\ ;

ps 7" Q0 — Up5®7'®"®aUT,
[U,Hs + Hr + Hc] = 0.

Borrow a catalyst that is returned to itself (or € close to itself).

Thermal reservoir: add arbitrary number of copies of a thermal state
belonging to a Hamiltonian Hxg.

Perform any unitary operation U such that [U, Hs + Hgr + Hc].

Perform the partial trace over the reservoir and the catalyst.
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A Zeroth Law and Gibbs states

Thermal reservoir
T,Hp
Catalyst Catalyst

1
1

i
! i
: ’ Energy Preserving Process i
. U 1
] SRC H
: 8 o o :
: ]
! i
4 1

i
! i
1

i
i

ps 7" Q0 — Up5®7'®"®JUT,
[U, Hs + HR-I-Hc] =0.

e A type of Zeroth Law of Thermodynamics:

If we choose for 7 any other form than %e_BHR,

then any ps — ps transformation is possible.

(F. Brandao, M. Horodecki, J. Oppenheim, J. R and R.W. Spek}
(2013).)

Phys. Rev. Lett. 111, 250404
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A Second Law and the von Neumann entropy
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e A type of Second Law of Thermodynamics:
If in the above set-up a ps — ps transformation is possible, then

F(ps) < F(ps)
Tr(Hsps) — B S(ps) < Tr(Hsps) — B~ *S(ps)
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e A type of Second Law of Thermodynamics:
If in the above set-up a ps — ps transformation is possible, then

F(ps) < F(ps)
Tr(Hsps) — B~ S(ps) < Tr(Hsps) — B~S(ps)
BED(pSsllps) — B M log Z < B D(ps|lps) — B log Z

(F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, PNAS 112, 3275 (2015).)
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The Second Laws of Thermodynamics
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e However, the decrease of free energy is not the only restriction!
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The Second Laws of Thermodynamics

e However, the decrease of free energy is not the only restriction!

e Second Laws of Thermodynamics:
If in the above set-up a ps — ps transformation is possible if and only if

— « — _ « _ 1
B0 (psllps) B log Z < 57Dy (ps|lpp) 5 log Z for 5 < <1,

BDL (psllps)—B* log Z < B DSV (ps|lps)—B log Z for a > 1.

It is then customary to introduce

Fi(pllps) = DI (psllps)—B " log Z.

heim, and S. Wehner, PNAS 112, 3275 (2015).)

(F. Brandao, M. Horodecki, N. Ng, J. Opp
12/16



Extension of the Third Law of Thermodynamics

not this. but this.
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e Nernst's argument states that: at zero temperature, a finite size system
has an entropy S, which is independent of any external parameters X,

that is S(T,X1) — S(T, X2) — 0 as the temperature T — 0.
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e Nernst's argument states that: at zero temperature, a finite size system
has an entropy S, which is independent of any external parameters X,
that is S(T,X1) — S(T, X2) — 0 as the temperature T — 0.

e As the entropy at zero temperature should be the logarithm of the
ground state degeneracy, the validity of the third law is contingent on
whether the degeneracy changes for different parameters.
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Extension of the Third Law of Thermodynamics

not this. but this.

e Nernst's argument states that: at zero temperature, a finite size system
has an entropy S, which is independent of any external parameters X,
that is S(T,X1) — S(T, X2) — 0 as the temperature T — 0.

e As the entropy at zero temperature should be the logarithm of the
ground state degeneracy, the validity of the third law is contingent on
whether the degeneracy changes for different parameters.

e By modeling a physical process using two main ingredients:

e finite information (entropy) propagation speed,
e bound on the entropy S(E) < aV1~YEY with v € (1/2, d;il)
one can derive a temperature-time bound

const.
Ts > o

(L.M and J. Oppenheim, Nature Comm. 8, 14538 (2017).)
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e The quantum mechanical version: Universally Programable Quantum

Computer
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Quantum Computers with a Neumann Architecture

e The classical Neumann architecture:

cpu
R
Logie Unn (L)
Wemory
(detaand
nsuvetons)
[Gontrl Logie

Input
Devices.

i

e The quantum mechanical version: Universally Programable Quantum

Computer

|d) — — Uld)

[Prry — —

[Py

e One needs a program input size that scales between exp(d) and

exp(exp(d)).

(M. A. Nielsen, I. L. Chuang, Phys. Rev. Lett., 79, 321 (1997).)
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