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Motivations
Why are extremes important for understanding basic features of dynamical systems?

• We have been learning of relevance of extremes for theory and
applications

• Some theorems ensure that extremes of special observables
in mixing Dynamical Systems are GEV-distributed.

• Extremes can provide information on rather refined
properties of the invariant measure.

• Is it possible to introduce numerical models and algorithms
allowing for testing rigorously the previous properties when
finite data sets are considered?

• We wish to present new results that suggest the possibility of
developing a theory of extremes for general observables
when Axiom A systems are considered.

• We can also show that it is possible to draft a response theory
for computing the sensitivity of the extremes to perturbations
to the dynamics.



What is an Extreme Value? (1/3)
The Block Maxima approach

From the f (t) series we select a total of n maxima Mn.
Each maximum is taken every m observations



What is an Extreme Value? (2/3)
The Generalized Extreme Value (GEV) distribution

For independent and identically distributed variables (i.i.d.),
Gnedenko stated conditions on the parent distribution of f (t) such
that the cumulative distribution of maxima Mn converges,
asymptotically, to the GEV distribution:

FG(x ;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
x − µ
σ

)]−1/ξ
}

which holds for 1 + ξ(x − µ)/σ > 0.

• µ is the location parameter: fit for bins of length m is 1/am

• σ is the scale parameter: fit for bins of length m is bm

• ξ discriminates the type of distribution:
ξ → 0: Type 1 (Gumbel distribution)
ξ > 0: Type 2 (Frechet distribution
ξ < 0: Type 3 (Weibull distribution).



What is an Extreme Value? (3/3)
The Peak over threshold approach

We set a threshold T on the f (t) series.
We take all the Mn above the threshold. We shall see later.
We start by looking at the GEV approach.



Extremes in Dynamical Systems:
What do we need to observe Extreme Value Distributions in Dynamical Systems?

We will consider discrete time dynamical systems xt+1 = h(xt)

• Nicolis, Balakrishnan et al. have shown no convergence to
GEV distribution in regular dynamical systems.

• Vannitsem, Felici et al. have shown that in practical cases the
convergence to GEV distribution depends strongly on the chosen
observable (in particular: grid point statistics are mmmmhhhh)

• Freitas, Todd and Collet et al. have shown that for mixing
systems the convergence is achieved if a particular class of
observables is chosen.



Extremes in Dynamical Systems:
Ingredients

In order to obtain asymptotic convergence to the GEV
distribution for extremes in dynamical systems we need:

• To prove some short- and long-term mixing conditions - D, D’,
D2.

• To choose suitable observable functions.

In order to infer the GEV parameters from the outputs of
dynamical systems we need:

• .. patience.

• to be able to control the rate of asymptotic convergence.



Extremes in Dynamical Systems
Hitting Time Statistics: clarifying the role of the dynamics

Instead of proving mixing conditions we can check the properties
on the Hitting Time Statistics around the point ζ:
• Exponential HTS←→ EVT

The recurrence time τA in a measurable set A ∈ Ω, as

τA(x) = inf
t≥1

{
x ∈ A : f t (x) ∈ A

}
,

and the average recurrence time < τA > as

< τA >=

∫
τA(x)dµA(x) µA(B) =

µ(A ∩ B)

µ(A)
,

We define the Hitting Time Statistics as the following limit (whenever
it exists):

H(t) = lim
µ(A)→0

µA(A>t ) A>t ≡
{

x ∈ A :
τA(x)

< τA >
> t
}
. (1)



Extremes in Dynamical Systems:
The choice of the observable functions (1/2)

According to Freitas et al. (2009, 2011), following Collet (2001) found
that we have an exponential HTS on balls around almost any point ζ
on the attractor if and only if extreme value laws apply for the
observables of type

gi (dist(x , ζ)),

i = 1, 2, 3 described in the next slide.

Axiom A systems obey these properties.

Among the invariant measures we will choose the physical one.
• The observable function gi (dist(x , ζ)) must achieve a global

maximum at x = ζ and be monotonically decreasing.

• With the Block Maxima approach procedure, asymptotically we
get a GEV distribution whose parameters depend on the local
dimension D(ζ) of a ball centered on ζ.



Extremes in Dynamical Systems:
The choice of the observable functions (2/2)

The behavior of the tail of the distribution discriminates the type of
GEV we get. It has been proven that:

1 g1(dist(x, ζ)) = − log(dist(x, ζ))→ type 1 dist.

At first order: ξ = 0, σ = 1
D(ζ) , µ = log(m)

D(ζ)

2 g2(dist(x, ζ)) = (dist(x, ζ))−1/α → type 2 dist. The parameter
α > 0, α ∈ R

At the first order: ξ = 1
αD(ζ) , σ = m

1
αD(ζ) , µ = m

1
αD(ζ)

3 g3(dist(x, ζ)) = C− (dist(x, ζ))1/α → type 3 dist. The constant
C ∈ R.

At first order: ξ = − 1
αD(ζ) , σ = m

−1
αD(ζ) , µ = C.



Extremes in Dynamical Systems:
A sort of central limit theorem

The convergence is ensured only asymptotically and two limits
must be ideally satisfied:

1 The number of observations m in each bin should be
extremely large

2 The number of maxima n should provide a wide enough
statistics.

We first investigated the applicability of the theory on low
dimensional maps:

What is the order of n and m we need to apply the theory?



Numerical Algorithms for studying Extremes:
Methodology and numerical tools

Fixed series length
k = m · n = 107 iterations of the map.

• We compute the series of the observables and then divide
them into n bins each containing m iterations.

• Varying n (and consequently m) we check the experimental
distribution parameters against the theoretical ones.

• The following results are for the f1 observable but the other
observables behave in the same way.

• Different mixing low-dimensional maps have been used,
(Bernoulli Shift, Arnold Cat Map, Logistic Map, IFS, Henon, Lozi,
Baker).



Numerical Algorithms for studying Extremes:
Results on absolutely continuous invariant measures

The Logistic Map:

xt+1 = 4xt (1− xt )

has an absolutely continuous invariant measure (a.c.i.m.).

• It is a one dimensional, mixing map, so we expect to find
D(ζ) = 1 for almost all the points ζ ∈ [0,1]

• The results are shown for the observable f1, for which we expect
to find:

ξ = 0 σ = 1



Numerical Algorithms for studying Extremes:
The dilemma of EVT inference

long bins & few true extremes short bins & many soft extremes



Numerical Algorithms for studying Extremes
Results on singular continuous measures

• The cdf of extremes may not absolutely continuous anymore as
an effect of the inaccessible distances.

• The GEV model gives the best continuous approximation.

• The dimension D(ζ) implied in the GEV parameters scaling is
now the local dimension.

• We are able toe stimate with high precision the fractal dimension
of e.g. the Henon, Lozi attractor

• A possible alternative to the Grassberger-Procaccia algorithm



Numerical Algorithms for studying Extremes
Example: Cantor Set (1/2)

The Cantor Set can be obtained via the following Iterating Function
Systems (IFS):

x(1)t+1 =
1
3

xt x(2)t+1 =
2
3

+
1
3

xt

where at each time step we iterate x(1) or x(2) with equal probability

The Block maxima approach has been checked against the
following theoretical results:

µ ∼ log(m)/D(ζ) σ = 1/D(ζ) ξ = 0

where D(ζ) = log(2)/log(3) = 0.6309 for almost every points
belonging to the attracting set.



Numerical Algorithms for studying Extremes
Example: Cantor Set (2/2)



Numerical Algorithms for studying Extremes:
Periodic or Quasi-periodic orbits (1/2)

If in a neighborhood of a point ζ the mixing conditions are not
satisfied, we are unable to observe a GEV distribution.

At a finite sample size, the behavior could be explained using the
results of Balakrishan, Nicolis et al.:

Choosing as observable f∗(t) = min(dist(xt , ζ) and selecting the
extremes with the block maxima approach we get a piecewise
linear cdf

Example:

yt+1 = yt +
κ

2π
sin 2πxt xt+1 = yt + xt mod 1 (2)

Standard Map: quasi periodic orbits if κ� 1. We set κ = 10−4



Numerical Algorithms for studying Extremes:
Periodic or Quasi-periodic orbits (2/2)



Beyond the Extremes’ statistics: a new indicator of stability
A short summary

Mixing Orbits:

• Maxima of selected observable (fi ) family) are asymptotically
distributed according to the GEV distribution.

• The theory works both for absolute continuous and singular
continuous invariant measures.

Quasi-periodic Orbits:

• Minima of selected observable (f∗ family) have a piecewise linear
cdf.

• Maxima of fi family observables do not converge to a GEV
distribution.



Beyond the Extremes’ statistics: a new Indicator of Stability
The idea: Using extremes to discriminate chaotic and regular orbits

A⇒ B ⇔ ¬B ⇒ ¬A

Since we observe convergence to GEV distribution only if the
orbit satisfies mixing requirements, we can try to use extremes

to discriminate chaotic and regular behaviors.

EXAMPLE

The Standard map has a coexistence of chaotic & regular orbits.

Taking different initial conditions on the 2-d torus we compute the
extreme value statistics parameter and check it against the expected
theoretical values. We have a convincing way to detect the regular
islands.



Beyond the Extremes’ statistics: a new Indicator of Stability
An experiment on the Standard map

Estimates of D(ζ) through the parameter ξ
In the blue regions quasi-periodic behavior, EVT is not observed

Ensemble averages: uncertainty is low for high & low K
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Peak Over Threshold and Generalised Pareto Distribution

Three steps

• Only events above a given
threshold are selected: we
select the tail of the
distribution

• We want to estimate the
probability of events smaller
than a certain value, given
that they are larger than the
threshold

• Like for the GEV, the shape
parameter give the
qualitative properties of the
resulting distribution



GPD and GEV are step brothers
R. Deidda: Valerio, why using GEV, are you a fool? GPD works way better!

Extremes should be extremes

• Cumulative Generalised
Pareto Distribution

• Asymptotic link between
GEV and GPD

• Fact: shape parameters are
the same

• GPD methods used to fit
GEV



GPD overcomes the difficulties of GEV

• A threshold T is a
radius r∗ →

• Conditional
probability→

• Complementary
cumulative function

• We are close!



GPD approach is just a magnifying glass
.... with a suitable weighting

• We assume a local scaling of the measure of the attractor:

• We translate this mass scaling into the equation for Hg,T :

• This is a VERY general result

• Axiom A: D(ζ) = D = dH ' dKY

• mixing dynamics: local→ global



Let’s specify the results for the g′i s observables

Functional form of the g′i s:



... and where are those mixing or HTS conditions?

We lost track of them!

• GPD: where are the conditions on the dynamics?

• Example: in a quasi-periodic system, choosing VERY
long blocks, with GEV approach you end up choosing
more or less always the same maximum

• With GPD, the observable acts as a magnifying glass
near ζ → info on the local geometrical properties

• With mixing, (e.g. Axiom A), we get global information

• Pareto→ geometry, Gnedenko→ dynamics

• They give the same information when geometry
and dynamics commute → mixing conditions



Towards more general observables

Distance observables are not very physical

• .... unless one looks at recurrences of the orbits→
weather analogues

• Example: we want to look at energy-like observables
of the form 〈~x ,M~x〉 where ~x is a point in the phase
space, M is a matrix, and 〈•, •〉 is the scalar product

• In Fluid Dynamics, many physical observables can be
written in this form!

• More in general, we want to study the extremes of
A : ~x ∈ Rn → A(~x) ∈ R.

• Difference wrt previous case: Geometry of the
portion of attractor where extremes are realized



Geometry of the problem

Construction
• A(x) has isolated max Amax in x0 ∈ Ω

• βmax is tangent to A(x) = Amax in x0

• ĝ is parallel to ∇A(x)|x=x0 6= 0

• A(x) = T is threshold, βT is βmax → ĝ

• Extremes of A(x) are in Ω̃T
max ...

• ... as T → Amax , Ω̃T
max ∼ ΩT

max



Mass of ΩT
max

Indeed not a the intersection of a ball with a fractal set!
• Exceedance

A(x)− T is ∝
distance btw x and
βT

• Complementary
cumulative function
comes from
conditional
probability



General Result

• We assume the flow is Axiom A so to relate local and global
measures of the dimension of the attractor

• Assuming generic geometry (!) ... ν
(

ΩT +Z
max

)
∝ (Amax − T − Z )δ

• where δ = ds + du/2 + dn/2 regardless of the observable
• ds/du/dn(= 1) are the stable/unstable/neutral direction of the flow

• Final result (See also: Holland et al. 2011, GEV approach):



Extremes→ Partial Dimensions

• We have ξA = −1/δ = −1/(ds + dn/2 + du/2): ξA is negative
because the attractor is compact

• ... But, in practical applications, the system can take long time to
realize this!

• Let’s take B(x) = −dist(x , x0)β , β > 0.

• We have: ξB = −β/dKY = −β/(ds + dn + du)

• We derive:
2
ξA
− 2β
ξB

= du + dn

β

ξB
− 2
ξA

= ds

• Partial dimensions along the stable and unstable directions &
extremes related to x = x0.



Shape Parameter from Empirical Moments

GPD density:

fGPD(z; ξA, σA) =
d

dz
(FGPD(z; ξA, σA))

First two moments:∫ −σA/ξA

0
dz z fGPD(z; ξA, σA) =

σA

1− ξA
= µ1∫ −σA/ξA

0
dz z2 fGPD(z; ξA, σA) =

2σ2
A

(1− ξA)(1− 2ξA)
= µ2.

It is easy to derive that

ξA =
1
2

(
1− µ2

1

µ2 − µ2
1

)
=

1
2

(
1− 1

idA

)
.

idA is the index of dispersion



Shape Parameter from Observables

Rewriting the moments in terms of conditional invariant measure:

µT
1 =

∫
ρε(dx)Θ(A(x)− T )(A(x)− T )∫

ρ(dx)Θ(A(x)− T )
=
〈Ã1〉T

〈Ã0〉T

µT
2 =

∫
ρ(dx)Θ(A(x)− T )(A(x)− T )2∫

ρ(dx)Θ(A(x)− T )
=
〈Ã2〉T

〈Ã0〉T
.

Expression for the shape parameter:

ξT
A =

1
2

(
1− (〈Ã1〉T )2

〈Ã2〉T 〈Ã0〉T − (〈Ã1〉T )2

)
,

where the result is exact in the limit for T → Amax :

ξA = lim
T→Amax

ξT
A .

Same applies for B observables.



A Response Theory for Extremes (1/3)

A brief recap of Ruelle’s response theory for Axiom A systems:

• We perturb ẋ = G(x)→ ẋ = G(x) + εX (x), where ε is small

• Evolution operator f t → f t
ε and the invariant measure ρ0 → ρε.

• We can write 〈Ψ〉ε = 〈Ψ〉0 +
∑∞

j=1 ε
j〈Ψ(j)〉0

• 〈Ψ(j)〉0 time-integral of a Green function

• Useful formula:
dn〈Ψ〉ε

dεn

∣∣∣∣
ε=0

= n!〈Ψ(n)〉0.

• Consider n = 1 case.



A Response Theory for Extremes (2/3)

• Even if Θ is not smooth, we can derive for every T < Amax :

dξT ,ε
A

dε

∣∣∣∣
ε=0

= −1
2

d
dε

{
(〈Ã1〉T ,ε)2

〈Ã2〉T ,ε〈Ã0〉T ,ε − (〈Ã1〉T ,ε)2

}∣∣∣∣
ε=0

.

• Recipe for sensitivity of ξT ,ε
A at ε = 0 for any practical case

• Formal problems emerge for existence of:

lim
T→Amax

dξT ,ε
A

dε

∣∣∣∣
ε=0

= lim
T→Amax

lim
ε→0

ξT ,ε
A − ξT ,0

A
ε

• Not clear whether such limit is equal to limε→0 limT→Amax

ξT ,ε
A −ξ

T ,0
A

ε

• If limits exist and equal→ response theory for ξA (same for ξB).



A Response Theory for Extremes (3/3)

Extremely bizarre results follow from this

• Assume: ξA & ξB diff. & system struct. stable (strong trans.)

• Remember: ξA and ξB can be expressed in terms of ds, dn, du.

dξεA
dε

∣∣∣∣
ε=0

=

{
1

(dεs + dεu/2 + dεn/2)2

d(dεKY )

dε

} ∣∣∣∣
ε=0

.

dξεB
dε

∣∣∣∣
ε=0

=

{
β

dεKY
2

d(dεKY )

dε

}∣∣∣∣
ε=0

;

• Derivative of dKY

d(dεKY )

dε

∣∣∣∣
ε=0

= −
{

(dεs + dεu/2 + dεn/2)2

2

} ∣∣∣∣
ε=0
×

×

{
d
dε

(〈Ã1〉T ,ε)2

〈Ã2〉T ,ε〈Ã0〉T ,ε − (〈Ã1〉T ,ε)2

}∣∣∣∣
ε=0

• In the limit, of course...



Comments

If one of ξA, ξB or dKY differentiable, all are differentiable

If ξA increases with ε→ ξA closer to zero
• ε−perturbation increases the Kaplan-Yorke dimension

• ε−perturbation increases the index of dispersion

• Qualitatively, it favors forcing over dissipation→ larger extremes

Weak statement: connection btw regularity of ξA, ξB, and dKY wrt
perturbations.
• Numerical experience shown that these quantities are relatively

regular when we consider high-dimensional systems

• Not so in low dimensional systems!!!

• Same with Lyapunov exponents, etc: if this were not the case,
data assimilation, models tuning, etc would be hopeless. But...



Remarks

1 Relationship between GEV/GPD parameters and Local
Dimension Attractor.

2 Numerical algorithms corresponding to limits in theorems.

3 GEV parameters as Dynamical Indicators of Stability.

4 GPD theory more informative of the geometry of the system,
but misses dynamics.

5 EVT for Physical Observables in Axiom A systems.

6 From Extremes to Partial Dimensions in Stable/
Neutral/Unstable Directions.

7 Establishment of Response Theory.

8 Differentiability of Shape Parameter/Differentiability of dKY .
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Studying critical transitions



What is a critical transition in Earth sciences?
A popular example: The day after tomorrow

• Critical transition: abrupt change of the properties of a system.
• Corresponds to a bifurcation, which results into a change of the

physical measure (supported in the attractor).
• Three main classes of bifurcations: parametrically induced,

rate-induced, and noise-induced.



What is a critical transition in Earth sciences?
The Snowball Earth example.

• Efficiency of the climate engine: η = Φh−Φc

Φh = TW −TC
TW

• At critical transitions η decreases→ system closer to equilibrium→
system more stable X (Boschi et al. 2013, Icarus).



What about detecting tipping points? Traditional approach

Mainstream approaches - see e.g. Scheffer et al. (2009):

• Critical slowing down: as the system approaches such critical
points, it becomes increasingly slow in recovering from small
perturbations.

• The slowing down should lead to an increase in
autocorrelation in the resulting pattern of fluctuations.

• Increased variance in the pattern of fluctuations is another
possible consequence of critical slowing down: the effect of
perturbations accumulates.

• As made clear by Ditlevsen: if we want to the usual simple model
of tipping point to interpret data, all of these properties must be
observed near a critical transition



Traditional approach... and its limits

• These indicators are so and so when a Hopf bifurcation is
approached: slowing down & long transient oscillations.

• Departure from Gaussianity not useful if even far from bifurcation
the time series is not Gaussian, and already in few d.o.f. systems,
the two-well model may lead to major mistakes in the time scales

• Internal fluctuations (which bring the system to the border of a
basin of attraction) are not associated with particular
properties of specific stable or unstable points

• Spatially extended and/or high dimensional systems may
have very complicated bifurcation patterns

• Freidlin-Wentzell theory may allow for studying rigorously tipping
points, we are not quite there.



The advantages of using Extreme Value Theory

• The indicators used by Scheffer cover statistical properties
which are related only to the first moments of the data
distribution.

• This lacks universality; we want to look for more intrinsic
characterizations of large fluctuations.

• ... well, this is exactly what Extreme Value Theory does!

• Recently, rigorous extreme value laws have been established for
chaotic dynamical systems for various classes of observables.

GOAL

Find sensitivities of extremes when nearing tipping points
Study the boundary between the basins of attraction



The Plane Couette Flow



The Plane Couette Flow

• This flow is ideally obtained by
shearing a fluid between two
infinite parallel plates at a distance
2h moving in opposite directions
at speeds Uw , which defines the
stream-wise direction x , y and z
being the wall-normal and span-wise
directions, respectively.

• The laminar profile is just
Ub(y) = Uw = y/h

• The Reynolds number is
Re = Uw h/ν.



Motivations
Transitions in the Plane Couette flow

• The linear velocity profile is linearly stable at all values of
Re: no gradient of background vorticity.

• In fact, the laminar flow is observed only for a limited range
of Re < Reu, It is known that for larger values of Re, the size
of the basin of attraction to the laminar state is extremely
small but non-vanishing.

• Whenever we observe in practice a persistent turbulent
state, we in fact in a regime where the system is multistable:
the laminar and turbulent states cohesist

• The transition to turbulence of the plane Couette flow is an
open problem of fluid dynamics



Phenomenology of the Plane Couette flow
Bifurcations

• For Re < Reu ' 280, the laminar profile is rapidly recovered
whatever the intensity of the perturbation brought to the flow.

• For Reu < Re . Reg = 325, turbulence is only transient but as
Reg is approached from below, the lifetime of turbulence
increases.

• For Reg . Re . 360 turbulence takes the form of irregular large
spots.



Phenomenology of the Plane Couette flow
Bifurcations

• For 360 . Re . Ret = 415 the spots merge to form oblique
stripes. These stripes are characterised by a regular modulation
of the turbulence intensity which dies out when Ret is
approached from below.

• For Ret . Re a regime of featureless turbulence is observed.



Phenomenology of the Plane Couette flow
Hysteresis and bands structure in the reverse transition

• In the forward transition, obtained increasing Re, the dynamics
is characterized by the presence of turbulent spots.

• The reverse transition is marked by the occurrence of oblique
turbulent bands, only observable in very large aspect ratio
systems, (Reg < Re < Ret ) .



Phenomenology of the Plane Couette flow
More on the bifurcations

• The presence of bands structure in numerical simulations is an
encouraging sign of the robustness of the structure itself and
on the possibility of investigating numerically the problem.

• Not yet a theory explaining the transition with the suppression
of the bands

A spatiotemporal process if system is extended.



Numerical Experiments in Plane Couette flow
Methodology and numerical tools

The data analyzed have been provided by numerical simulations
performed by P. Manneville using the code channelflow.
• Low: Ny = 15, Nx = 108, Nz = 192→ [Rg ; Rt ] = [275; 350]

• Medium: Ny = 21, Nx = 216 Nz = 384→ [Rg ; Rt ] = [300; 380]

• High: Ny = 27, Nx = 324, Nz = 384→ [Rg ; Rt ] = [325; 405]

The typical length of the series is
k = m · n ' 3 · 105 time units.

• We proceed from above!

• The observable taken is the Perturbation Energy E (the mean
square distance to the laminar flow).

• The series of E is divided in bins. Maxima and minima of each
bin are extracted and fitted to the GEV distribution.



The Results on Plane Couette numerical simulations (1/3)
Analysis of Shape GEV parameter κ for the maxima and minima distribution VS Re

• The shape parameter for minima distribution changes,
changing the type of GEV observed.

• The distribution of maxima is less modified by the changes in
Reynolds number.



Results on Plane Couette numerical simulations (2/3)
Maxima and minima distribution VS Re − Reg

• Consistent results for increasing resolutions!



The Results on Plane Couette numerical simulations (3/3)
Some Remarks on the results

• When The Reynolds number move towards the critical value Reg
we observe a clear change in the sign of the shape
parameter of the GEV distribution for the minima whereas
the maxima distribution belongs to the same family.

• The amplitude of fluctuations of the minima increases more than
that of the maxima, as the system ”feels”the presence of the
laminar state, which rises the probability of very low levels of
turbulence when Re is decreased.

• This is instead related to the presence of the competing
attracting state, which causes the increase in the skewness
for the distribution of minima



Some theoretical models for
critical transitions



Barkley’s model

• We consider the following system of SDEs:

dX/dt = −(µ+ uξ(t))X + Y 2

dY/dt = −νX + Y − XY

• where µ, ν ∝ 1/R describe viscous effects and
E = 1/2X 2 + 1/2Y 2 is conserved by the nonlinear terms, u > 0
and ξ is a white noise. u contributes to viscosity.

• For µν ≤ 1/4 we have multistability, and competition between the
(0,0) solution (laminar) and a turbulent state.

• We set µ = 1, ν = 0.2475 and ν = 0.2487 and test the escape
rate from the turbulent state as a function of u.

• n = 103, m = 106



Noise-induced bifurcations in Barkley’s model
Transitions turbulent→ laminar



Particle in a double well potential
The experiment

For the potential V (x) = ax4 + bx2 + cx we keep a,b fixed while we
modify c in such a way that the system is pushed towards the left
well. This happen in the deterministic system when c = ccrit .

1 We select an initial condition x0 ∼ 0.63 and make 100
realizations of the systems, with ε fixed.

2 For each realizations we obtain a series of length k = 106 data.

3 We split the series in 1000 bins each containing 1000
observations.

4 For the gi , i = 1,2,3 observables and the maxima and minima
we fit the GEV distribution and study the behavior of the shape
parameter.

If the particle falls in the left well, we interrupt the series and
create another transient.



Particle in a double well potential
Analysis of Shape GEV parameter κ for the maxima and minima distribution VS c



Particle in a double well potential
Analysis of Shape GEV parameter κ for the maxima and minima distribution VS c

The results show the same quantitative behavior as obtained
analysing the Plane Couette flow:

• Also in this case the shape parameter for the minima
distribution approach zero when we push the system
through a critical transition.

• The shape parameter for the maxima remains more or less
constant when the potential is modified.



Final Remarks

1 Extremes can provide early warnings of critical transitions when
the Reynolds number is decreased to Re ∼ Reg

2 Change in the minima linked to the presence of the laminar
attracting state

3 Same quantitative results have been obtained on a simple
theoretical model of critical transition

4 Further explore the possibility of using extremes as a generic tool
to study the critical transitions

5 MPE 2013 Event at Newton Inst. in Cambridge, Oct-Dec 2013
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