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Introduction Path integrals and simulation

Feynman’s path integral

Consider the one-particle time dependent Schrödinger
equation:

ih̄∂tψ(x, t) =
(
−(h̄2/2m)∆+V(x, t)

)
ψ(x, t)

Feynman’s deep insight:

K(x2, t2;x1, t1) =
∫

q(t1,2)=x1,2

Dq(t)exp
(

i
h̄

∫ T

0
L(q, q̇, t)dt

)

Extremely powerful tool for quantizing relativistic field
theories and
by a clever sampling of the paths, enables estimation of
the propagator.
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Introduction Path integrals and simulation

Feynman-Kac theorem

Inspired by the work of Feynman, Kac proved that the parabolic
system

∂tu(x, t)−
σ2

2
∂

2
x u(x, t)−V(x, t)u(x, t) = 0,

with V(x, t), σ2 and the terminal condition u(x,T) = v(x) are
given, can be solved by computing the conditional expectation

u(x, t) = E
[
e−

∫ T
t V(Xτ ,τ)dτv(XT)

∣∣∣Xt = x
]

on the space of sample paths of the process dXt = σdW.

Allows the estimation of u(x, t) by simulation of a Wiener
process and calculation of

∫ T
t V(Xτ ,τ)dτ.
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Introduction Checkerboard model

The checkerboard model

How can we find a path integral representation of the time
evolution of a spin−1/2 particle described by the massive Dirac
equation?

(ih̄γ
µ

∂µ −mc)ψ = 0

Feynman’s idea:
introduce an inner state based on some finite memory,
estimate the propagator on discrete spacetime by
assigning appropriate complex phases to paths of the
spacetime lattice,
take the formal continuum limit.
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Introduction Checkerboard model

The checkerboard model

In 1+1 dimensions:
assign the inner state ω(t) = +1 (−1) to the particle at time
t if it has a positive (negative) instantaneous velocity
in the next time step the particle moves form the current
position x(t) ∈ Z to x(t+1) = x(t)+ω(t), but when it arrives
to the desired position, it can switch its inner state
denote the space of admissable spacetime trajectories
connecting l to k in T steps starting at the inner state ω and
ending in the inner state τ by Pω→τ

l→k (T)

if P ∈Pω→τ
l→k (T), denote the number of reversals by R(P)
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Introduction Checkerboard model

The checkerboard model

t

x
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Introduction Checkerboard model

The checkerboard model

Feynman’s proposal is

Checkerboard propagator

Kτω(k∆x, l∆x,T∆t)≈ ∑
P∈Pω→τ

l→k (T)

(
i
mc2

h̄
∆t
)R(P)

Writing down a finite difference equation for the r.h.s. in order to
express its value corresponding to T +1 and applying the
scaling limit ∆x→ 0 and ∆t→ 0 such that ∆x/∆t→ c. Results in
the 1+1 dimensional Dirac equation for the propagator in the
Weyl representation.
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Introduction Checkerboard model

The checkerboard model

To sum up the result with Feynman’s own words:

Feynman’s Nobel Lecture (extract)
(...) Another problem on which I struggled very hard,
was to represent relativistic electrons with this new
quantum mechanics. (...) I was very much
encouraged by the fact that in one space dimension, I
did find a way of giving an amplitude to every path by
limiting myself to paths, which only went back and
forth at the speed of light. (...)
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Introduction Persistent random walk in 1+1 dimensions

Persistent random walk

Can we translate the checkerboard model to the language of
the stochastic processes also?

A particle has two internal states + and −. If it is in the + (−)
state, it moves to the right (left) with ∆x in time ∆t, until it
changes its internal state. The probability of such a transition is
λ∆t. The resulting Kolmogorov forward equation is

p±(x, t+∆t) = (1−λ∆t)p±(x∓∆x, t)+λ∆tp±(x±∆x, t)

The ∆x→ 0, ∆t→ 0, ∆x/∆t→ c (ballistic) limit is

Dirac equation with real coefficients?

∂tp = λ (σ1−12)p− cσ3∂xp
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Introduction Persistent random walk in 1+1 dimensions

The walk and the Dirac equation

Relation to the Dirac equation with complex coefficients:

Let λ 7→ mc2/(ih̄) and introduce ψ(x, t) = eλ tσ1p(x, t), then

ih̄(σ1∂t + cε∂x)ψ = mc2
ψ,

where ε = i−1σ2.

Since σ1 and ε generate C`1,1(R) and the chiral projections
PL = 1

2(1−σ1ε), PR = 1
2(1+σ1ε) are diagonal, we see that the

previous equation is the massive Dirac equation in 1+1
dimensions in the Weyl representation.
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Introduction Higher dimensional walks

The checkerboard model in 1 < d

What is the situation in higher dimensions?

Feynman’s Nobel Lecture (extract)
(...) I dreamed that if I were clever, I would find a
formula for the amplitude of a path that was beautiful
and simple for three dimensions of space and one of
time, which would be equivalent to the Dirac equation,
and for which the four components, matrices, and all
those other mathematical funny things would come
out as a simple consequence - I have never
succeeded in that either. But, I did want to mention
some of the unsuccessful things on which I spent
almost as much effort, as on the things that did work.
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Introduction Higher dimensional walks

The d = 2 persistent walk

In d = 2,
we assign the inner states ++, +−, −+ and −− to the
particle with a transition matrix Q between them
write down the forward Kolmogorov equation
take the ∆t→ 0; ∆x,∆y→ 0; ∆x/∆t,∆y/∆t→ c limit.

What we get for the time evolution of the probability is

∂tp = Lp− ce1∂xp− ce2∂yp,

where L is the infinitesimal generator of the Markov process
with transition matrix Q and

e1 = 12⊕ (−12) e2 = σ3⊕σ3

Apparently not the Dirac equation.
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Introduction Higher dimensional walks

An alternative strategy

Instead of following the instructions
define a process on the lattice then,
take the continuum limit

try the following
choose a representation of the Clifford algebra
discretize the Dirac equation
check whether it can define a stochastic process or not

To show a concrete example, take the representation of
C`3,0(R)

e0 =

(
0 12
12 0

)
e1 =

(
0 −ε

ε 0

)
e2 =

(
12 0
0 −12

)
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Introduction Higher dimensional walks

An alternative strategy

The equation is

∂tp = λe0p−αp− cβ1e1∂xp− cβ2e2∂yp

with constants λ , α, β1, β2 and c. By discretization we can
obtain

p1(x,y, t+∆t) = q11,1p1(x,y, t)+q11,2p1(x,y−∆y, t)+q13p3(x,y, t)

+q14,1p4(x−∆x,y+∆y, t)+q14,2p4(x,y, t)

with

q11,1 = 1−α∆t− β2c
∆x ∆t q11,2 =

β2c
∆x ∆t q13 = λ∆t

q14,1 =
β1c
∆x ∆t q14,2 =−β1c

∆x ∆t

which clearly cannot define a discrete time stochastic process.
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Positivity preservation of the Dirac equation The equation

The Dirac equation

The dimensionless Dirac equation with real coefficients:

d

∑
µ=0

γ
µ

∂µψ = ψ,

with {γµ ,γν}= 2ηµν
1S and each γµ is S×S and hermitian

matrices
Defining p(t) = e−αtγ0ψ(t)

∂tp =−αp+ e0p−
d

∑
µ=1

eµ∂µp,

with {eµ ,eν}= 2δµν1S

We consider the case when all the eµ ’s are real, symmetric
matrices
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Positivity preservation of the Dirac equation Positivity preservation and Bochner’s theorem

Positivity preservation

Definition
We say that

∂tp =−αp+ e0p−
d

∑
µ=1

eµ∂µp,

preserves positivity if for all 0 < t

S

∑
q=1

∫
Rd

pq(x, t)ddx = 1 0≤ p(x, t)

provided that normalization and non-negativity holds at t = 0.
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Positivity preservation of the Dirac equation Positivity preservation and Bochner’s theorem

How to prove?

The spatial Fourier transform of p(t) has a much more simple
evolution:

∂tΦ[p(t)](k) =−αΦ[p(t)](k)+ e0Φ[p(t)](k)− i
d

∑
µ=1

kµeµΦ[p(t)](k)

But the direct accessability of non-negativity is lost when Φ[p(t)]
is calculated.

What we need is a characterization of Fourier transforms of
non-negative functions.

Is there anything such like that?

The answer is - fortunately - yes: Bochner’s theorem.
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Positivity preservation of the Dirac equation Positivity preservation and Bochner’s theorem

Bochner’s theorem

Definition

The function Φ : Rd→ C is positive definite if for all finite
subsets Λ = {k1, . . . ,kN} ⊂ Rd the N×N matrix F(Λ) defined by
F(Λ)

ab := Φ(ka−kb) is positive definite.

Theorem (Bochner)

The function Φ : Rd→ C is a characteristic function of a
probability measure over Rd if and only if

1 Φ is continuous,
2 Φ is positive definite,
3 Φ(0) = 1.
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Positivity preservation of the Dirac equation Positivity preservation and Bochner’s theorem

Bochner’s theorem

Example
The diffusion equation

∂tp = ∆p

preserves positivity in all dimensions.

The time evolution of the Fourier transform

∂tΦ[p(t)](k) =−k2
Φ[p(t)]

leads immadiately to the solution

Φ[p(t)](k) = e−k2t
Φ[p(0)]
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Positivity preservation of the Dirac equation Positivity preservation and Bochner’s theorem

Bochner’s theorem

Continuity and normalization of Φ[p(t)] readily follows from

Φ[p(t)](k) = e−k2t
Φ[p(0)]

Let Λ = {k1, . . . ,kN} and F(Λ) be the corresponding (hermitian)
N×N matrix. Its time evolution is

F(Λ)
ab (t) = e−(ka−kb)

2tF(Λ)
ab (0).

If ζ ∈ CN is an arbitrary non-zero vector, then we have to show:

0 < (ζ ,F(Λ)(t)ζ )
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Positivity preservation of the Dirac equation Positivity preservation and Bochner’s theorem

Bochner’s theorem

Which can be shown by the application of the
Hubbard-Stratonovich transformation:

(ζ ,F(Λ)(t)ζ ) =
N

∑
a=1

N

∑
b=1

ζ aζbe−(ka−kb)
2tF(Λ)

ab (0)

= (4πt)−1/2
∫
Rd

N

∑
a=1

N

∑
b=1

(ζaeikax)
(
ζbeikbx)F(Λ)

ab (0)e−
x2
4t ddx

= (4πt)−1/2
∫
Rd
(ξ (x),F(Λ)(0)ξ (x))e−

x2
4t ddx > 0
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Positivity preservation of the Dirac equation Positivity preservation and Bochner’s theorem

Bochner’s theorem

Usually, showing the positive definiteness of a function is an
awkward task, but showing the possible breakdown of the
conditions can be much simpler

Test cases:
|Λ|= 1 we have 0 < Φ(0) = ϕ(0)
|Λ|= 2, say Λ = {K,K+k,} and we test on 12 = (1,1)T :

0 < ϕ(0)+ϕ(k)

It turns out that the examination of two conditions above are
enough to prove the main result.
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Positivity preservation of the Dirac equation Main result and outline of its proof

Result

Theorem
The massive free Dirac equation with real coefficients

∂tp =−αp+ e0p−
d

∑
µ=1

eµ∂µp,

preserves positivity for all 0≤ t if and only if
1 d = 1,
2 there is an integer 0 < m and a permutation matrix Π such

that
Πe0Π

−1 = σ
⊕m
1 Πe1Π

−1 = σ
⊕m
3 ,

3 α = 1.
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Positivity preservation of the Dirac equation Main result and outline of its proof

Proof in the forward direction

There are two main cases depending on whether e0 is
irreducible or not.

When e0 is irreducible the examination of the time evolution
of

ϕ(0, t) =
∫
Rd

p(x, t)ddx

and some linear algebra is enough to prove that S = 2, so
d = 1 such that e0 = σ1, e1 =±σ3 and α = 1.
When e0 is reducible the examination of the time evolution
of ϕ(0, t) leads only to the conclusion Πe0Π−1 = σ

⊕m
1 with

some 1 < m and permutation matrix Π. Then, the close
examination of the second condition 0 < ϕ(0, t)+ϕ(k, t)
leads to the desired result.
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Positivity preservation of the Dirac equation Main result and outline of its proof

Proof in the backward direction

It is enough to consider only the m = 1 case, when the equation
has the form

∂tp =−p+σ1p−σ3∂xp

which has the formal solution

p(t) = exp(t(−12 +σ1)− tσ3∂x)p(0)

Without dwelling on the technical details, the exponential on the
r.h.s can be approximated with the Lie-Trotter-Kato product
formula:

lim
N→∞

(
exp(tN−1(−12 +σ1))exp(−tN−1

σ3∂x)
)N

Since all the factors of these products preserves positivity, then
must so the original equation.
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Conlusion

At last but not least: my motivation

Given a representation of C`d+1,0(R), it is remarkable that every
hermitian generator is unitary and also hermitian.

Consider again the Dirac equation with complex coefficients.
The dimension of the spinor is S.

∂tψ =
mc2

ih̄
e0ψ− c

d

∑
µ=1

eµ∂µψ

Let Uµ be unitary matrices that intertwine between eµ and

σ
⊕S/2
3 , i.e. eµ = Uµσ

⊕S/2
3 U∗µ .
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Conlusion

At last but not least: my motivation

Application of the Lie-Trotter-Kato product formula gives

ψ(t+∆t)≈ U0e−i mc2∆t
h̄ e0U∗0U1e−c∆tσ3∂1U∗1 · · ·Ude−c∆tσ3∂d U∗dψ(t).

All the terms in the product are unitary.

Furthermore, it describes a unitary Quantum Walk with an S
dimensional coin space:

the operators Uµ and exp(−i mc2∆t
h̄ e0) belongs to U(S) and

act only on the coin space
the operators exp(−c∆tσ3∂µ) define spin-dependent shifts.

This was a particular example of a new concept of simulation:
the unitary one.
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Conlusion

At last but not least: my motivation

Lamata, Lucas, et al. Dirac equation and quantum relativistic
effects in a single trapped ion. PRL 98 253005 (2007)
Massive Dirac equation in the Dirac representation

ih̄∂tψ =−ih̄cσ1∂xψ +mc2
σzψ

Confine an ion in a linear Paul trap
Two internal levels are coupled by a resonant laser field:
h̄Ω↔ mc2

Red-sideband and blue-sideband Jaynes-Cummings
interaction can result in the partial shift of the CM and
(de-)excitation 2η∆xΩ̃x↔ c, ∆x =

√
h̄/2Mνx
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Conlusion

At last but not least: my motivation

Gerritsma, R., Kirchmair, G., Zähringer, F., Solano, E., Blatt, R.
and Roos, C.F., 2010. Quantum simulation of the Dirac
equation. Nature, 463, pp. 68-71.

Ca+ ion with internal states |S1/2,mJ = 1/2〉 and
|D5/2,mJ = 3/2〉
initial state: nearly zero momentum and |S1/2,mJ = 1/2〉.
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Conlusion

Conclusion

1 The Dirac equation cannot be simulated directly by a
{1, . . . ,S}×Rd valued stochastic process

2 Quantum simulators can compute the solutions of the
Dirac equation

3 The Dirac equation is not the only example of the super
capabilities of quantum simulators: recent post on arXiv
(1609.04408) claims that there are stochastic processes
such that the memory usage of the corresponding
quantum simulation with precision 2−n remains bounded
when n→ ∞.
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Conlusion

Thank You for your attention!
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