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Introduction
Continuum QCD

@ Field theoretic description of the strong interaction
@ A gluon field,y quark field
@ Lagrangian:

1
L=—gFuF" + 9 (D+m)y
@ QCD observable:

= / dAdydyOexp (i / L d4x>

@ On Hadronic energy scales QCD is strongly interac
@ Non perturbative regulator: lattice
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Lattice QCD

@ 4d hypercubic lattice

@ Quark fields on lattice sites
@ Gluons on links

@ Euclidean time (tg = —it)

@ vy (x;) 3d complex vector

@ Uy (x;) SU(3) group
element

Anderson transition in the spectrum of the Dirac operator



Introduction

Lattice QCD

@ Observable in LQCD:

(0)= % [ 4w (x)aF (x)aU, (x) O(y. 7 U) exp (~S (. 7. U)

Interactions
U (z+v)

@ Among glouns:

Uu (X) Uy (x + ) U] (x+v) U (x) T -~

@ Between quarks:

D(x,y) =Y Mux (Uu (%) 8y xu — UZL(X ~ V)& x—n)
u

@ Question: Why can | write “almost everything” in
Lagrangian?
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Introduction

Taking the continuum limit: Wilson RG

@ Let’s have a very complicated lattice action: S=Y;¢;S;(U)

@ Let’s do a blocking transformationU, (x) — W, (2x)(U)

Z:/dUexp(—S(U)) :/dUdVH6(V(UX)— W, (Uy))exp(—S(U))

= /dVeXp(—SneW( V))

T = @ Long distance physics
= = unchanged
] ]
] @ anew = 24

@ Lnew = g
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Introduction

Taking the continuum limit

Fixed points and renormalized trajectory

Renormalized trajectory

@ Simple example: just
two couplings

@ SU(3) pure gauge: B

bare coupling

// / \\\ @ Irrelevant flows to the fix
/ \ N point

Critical Surface

@ Relevant has to be tuned
@ Continuum limit: decreasing bare coupling, maintaining the
long distance physics

@ Fermions present: Give up one physical quantity
relevant parameter everything else is a prediction
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Dirac operator

Lattice Dirac operator

@ Quarks can be integrated out explicitely in the partition
function:

Z =] ]dUy (x)det(D(U)+m)exp (—Sy(U))
XM

D(U): Massless lattice Dirac operator

@ Discretization of the continuum y, (J, + Ay)
@ Observables can be built up from eigenmodes of D

@ D can be treated formally as a random “Hamiltonian”:
P(U) o< exp(—Sq (U))det(D(U) + m)
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QCD Chiral transition

@ Order parameter of chiral symmetry: Banks-Casher
(T. Banks and A. Casher (1980))

(W) = limmolimy_.. 52, p(1) = (£;8(A — ;)

@ Low eigenvalues connected the chiral symmetry breaking

@ p (A =0) # 0 means non zero condensate

T>T, T<T.
045 . . : — - ( . . ;

p(Aa) [fm™?]

OO0 0z 0% 03 05

0001 0.002 0003 0.004




Dirac operator
Dirac spectrum

Below T.: Random Matrix Theory (RMT)

@ Eigenmodes follow Random Matrix statistics

@ Random Matrix model can be constructed where the
elements of D are independently identically distributed
random variables.

@ Analytic and numerical connection to QCD in the so-called

€-regime Shuryak, Verbaarschot (1992): m <Lk m%r

@ The spectral statistics will depend on the position in the
spectrum

@ Above T, the low modes become localized, still
Correlations in the bulk ShOW RBMT behaviour carcia-Garcia and

Osborn(2006);T. G. Kovacs(2010);R. Pullirsch, K. Rabitsch, T. Wettig and H. Markum(1998)




Dirac operator

Low end of the spectrum

Mixing is small

@ Modes are spatially
localized

@ Number of modes is small
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Dirac operator

Bulk of the spectrum

Mixing is large

@ Modes are spatially

Number of modes

100

is large
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Dirac operator

What happens in between these two parts?
Variance of the ULSD in the spectrum for n; = 4,a= 0.125fm

@ We can define a mobility
: : : : edge(A¢) for all V

| . N=48 -
I e i“:%i’:i‘** - N=36 | @ A= Location of the
o ] . . .
i et N =24 inflection point of the
i ’*:f* -_ P01sson 1 curves
3 r ‘RMT 1
< *f
o | " | 2 What happens in the
I - 1 continuum limit?
“-Zx., | 7 Other models showing the
0178 ‘ ‘ ctt same thing? :
0.25 03 035
Aa

. ol
Is it a real pl
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Dirac operator

Mobility edge in the continuum limit
T.G. Kovacs and FP Phys. Rev. D (2012)

How A. behaves in the
continuum?

@ Ac introduces an i

effective gap in the 008 ]

Spectrum 400 i
@ Its renormalization |

is similar to the 200 .

quark mass I

100 .

@ Ac/myq4 tends to 0500 300 400 500 600 700 800 900

finite value in the T (MeV)

continuum limit

o @ A:(T)=0— T, ~170 MeV,

@ Localization is

physical
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Anderson transition

Anderson tight binding model

Non interacting electrons with one electron Hamiltonian

H =Y &li)il +(Z_)If></|
i i

@ |/) atomic orbital with energy &;

@ Second sum represents the hopping of the electron to the
neighboring site

@ Eigenstates are delocalized Bloch waves

@ Impurity: & — random

@ localized modes appear at the
spectrum edge

D(E)

@ o (&) grows — mobility edge
moves towards the band
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Anderson transition

Anderson tight binding model
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H =) &li){il+)_1i){|
i (i)
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Anderson transition
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Anderson transition
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Anderson transition

Anderson tight binding model
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Anderson transition

Anderson transition

Finite size scaling analysis B. Kramer, A. MacKinnon, T. Ohtsuki and K. Slevin (2010)

@ In 3d it is a real second order phase transition

@ Consider a dimensionless physical quantity a (E,s,---)

INFINITE VOLUME

@ In the thermodynamic limit: |

opyr for E<E; °© ol

o (E, S,--- ) = acrr for E=E; an
Qpoisson  for E > E¢

i
E

@ Finite volume: One parameter scaling hypothesis

@ « depends on:
@ L: system size
@ E: relevant variable
© s: leading irrelevant variable
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Anderson transition

Finite size scaling analysis B. Kramer, A. MacKinnon, T. Ohtsuki and K. Slevin (2010)

@ In 3d it is a real second order phase transition

@ Consider a dimensionless physical quantity a (E,s,---)

FINITE VOLUME

@ In the thermodynamic limit:
opyr for E<E, °
o (E, S,--- ) = acrr for E=E; amin
Qpoisson  for E > E¢

7
E

@ Finite volume: One parameter scaling hypothesis

@ « depends on:
@ L: system size
@ E: relevant variable
© s: leading irrelevant variable
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Anderson transition

Anderson transition

Finite size scaling analysis, Renormalization Group argument

o (E,s,L*1) is a dimensionless physical quantity, it should
be invariant under renormalization group transformation
with scale factor /:

E—E, — (v-(E-E),1>0
RG(l):{ s—sp — #-(s—sp),y<0
Lt — Lt
oc(E—EC,S—Sfp,L’1>:a(é%(E—EC),Ey(S—Sfp),EL’1>
@ Fix the RG scale suchthat¢- L~ '=¢
a (E— Ec,s—sfp,L‘1> —a ((cL)% (E—E.),(cLy

o (E~Ecs—sp, L") =fo (LV (E-Eo), LY (s
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Anderson transition

Anderson transition in the Dirac spectrum

Extraction of the critical exponents

Transition in the Dirac spectrum

@ Near the critical point a dimensionless local physical
quantity Q does not depend separately on A and L(lattice

extension): Q(4,L) = f(ﬁ)

@ Using the definition of the correlation length
(&~ (1) = (A —Ac)~") we can expand Q around A for A close to

Ac:
Q@AL)=f <€w€l)> —F (L‘v (A —)LC)) -
S SALIEPRPRY

n=0

@ determining A¢, v using the coefficients of a polinomial fit
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Anderson transition

Anderson transition in the Dirac spectrum

Critical exponents and Data collapse

@ Measuring A; and
v using several
volumes in two
variables fit

@ Estimate the
systematic error
through
constrained fits
including more
and more terms in
the expansion

@ We use the
quantity
ls(A) = [§p(s)ds’

04 : , , ‘ ‘
1 = I—
[T L=
0350 1 TraagiEale, L = 4.5 fm vw]
. .
Ya telL L =3 fmeeeee
0.3F '-.-:_ ]
....
0.25F ..
"
*s
L]
0.2+ »
.I
Be
0.15} L
R 1Y T,

045608 03 0§2 031 036 038

@ Critical exponents consistent with
the 3d unitary Anderson model:

v = 1.435(59), 1, = 0.33604(37)

M. Giordano, T.G. Kovéacs and FP (PRL 2014)
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Anderson transition in the Dirac spectrum

Critical exponents and Data collapse

@ Measuring A; and
v using several
volumes in two
variables fit

@ Estimate the
systematic error
through
constrained fits
including more
and more terms in
the expansion

@ We use the
quantity
Is(X) = Jg p(s')ds’

L =0fm——
035"% g, L =45 fmre]
"',.. L =3 fineees
: %
0.3} .
Y
0.25 1 '
‘l
0.2+ "
‘l
LY
0.15F L
P emnon. o
0.1

04 01

02, 0 0.2
Lv (A= X.)
@ Critical exponents consistent with
the 3d unitary Anderson model:

v = 1.435(59), 1, = 0.33604(37)

M. Giordano, T.G. Kovéacs and FP (PRL 2014)
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Multifractals

How the eigenvectors look like around the mobility
edge?




Multifractals

Inside a multifractal at the Anderson transition
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Multifractals

Multifractals: Characterized by infinite number of

fractal dimensions

@ Let |y (x)|? give the probability of finding a particle in an
infinitesimal region around x.

@ Finding the particle within a d dimensional sphere of radius

r (r small) scales as:

rd

@ For fractal wavefunctions this scales as

rOC

where a < d is the fractal dimension.
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Multifractals
Multifractal exponents

@ Divide our 4d lattice into smaller boxes of linear size Y.
@ Probability for boxes: tix = Y xcpox, |V (X) [2

@ From the moments of box probabilities one can define
generalized inverse participation ratios:

@ Obtain multifractal exponents check how R, scales with A
(small):
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Multifractals
Multifractal exponents

@ For g =2 we obtain the “effective” volume occupied by the
eigenmode

@ For alocalized mode « A — Dy_o =0
@ For a delocalized mode «< A3 — Dy_p =3
@ D, does not depend on g for (de)localized mode

@ At Ac modes are expected to be a multifractal:
Dq will depend on q

@ One can define the ensemble average of Dy in a specific
spectral window:

Dy(a.Lpy= 1)
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Multifractals
Finite size scaling for multifractal exponents

@ In the spectrum around A¢ Dg will jump in the
thermodynamical limit

o

@ Finite size scaling formula

~ 1 L ¢
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Multifractals

Finite size scaling at fixed A =
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Multifractals

Multifractal exponents for the QCD Dirac spectrum

4-5 T T T T T T

'S J

3.9

0O 02 04 06 0.8
q
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Multifractals
Conclusions

@ There are two different models: QCD and Anderson tight
binding
@ Differences
e Scales of the problem

@ Non-zero elements

e Correlations among the elements

@ Yet they belong to the same universality class, share the
same multifractal exponents

@ For more details see:
L. Ujfalusi, M. Giordano, FP, T. G. Kovacs and
l. Varga,Phys. Rev. D 92, no. 9, 094513 (2015)

@ Thank you for attention!
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