Anderson átmenet a kvark-gluon plazmában

Kovács Tamás György

Atomki, Debrecen

2015. április 22.

Együttműködők:

- Falk Bruckmann (Regensburg U.)
- Gergely Endrődi (Regensburg U.)
- Matteo Giordano (Atomki, Debrecen)
- Ferenc Pittler (Eötvös U.)
- Sándor Katz (Eötvös U.)
- László Újfalusi (Budapest U. of Technology)
- Imre Varga (Budapest U. of Technology)

Theory of strong interactions: QCD

Lagrangian: $\mathscr{L} = \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\psi}[D(A) + M]\psi$

- $F_{\mu\nu}$: field strength corresponding to A gluons
- ψ: quarks
- $D(A) = \gamma^{\mu}(\partial_{\mu} iA_{\mu})$ Dirac operator

Quantization — path integral

Ø physical quantity

$$\langle \mathscr{O} \rangle \; \approx \; \int \mathscr{D} \psi \mathscr{D} \bar{\psi} \mathscr{D} A \; \mathscr{O} \; \exp\left(-\int d^4 x \, \mathscr{L}\right)$$

- Integration in ∞ -dimensional function space
- Mathematical definition??? How to calculate it???

- Continuous space-time \longrightarrow 4-dimensional cubic lattice
- Integration over function spaces \longrightarrow finite dim. integrals
- Mathematically well-defined
- Continuum limit (how to get rid of the lattice?)
 - lattice spacing $a \rightarrow 0$
 - $\xi_{\text{lattice}} a = \frac{1}{M_{phys}} \Rightarrow \xi_{\text{lattice}} \to \infty$
 - tune system to critical point
 - tune a few parameters (gauge coupling, quark masses) to fix physics in $a \rightarrow 0$ limit

Lattice QCD

- $\psi_i \in \mathbb{C}^3$ (on lattice sites)
- Different basis at each lattice site
- $U_i \in SU(3)$ (complex rotation)
 - vector potential $\rightarrow U \approx e^{iA}$
 - 1 ightarrow 2 basis transformation (ψ)
 - dynamical variables on links

Discretization			
Derivative:	$\partial_\mu \psi$	\rightarrow	$\frac{1}{a}(\psi_2 - \psi_1)$
Covariant derivative:	$D_\mu \psi$	\rightarrow	$rac{1}{a}(\psi_2 - U_1\psi_1)$
Gluon action:	$\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$	\rightarrow	$-\frac{1}{g^2}\operatorname{tr}(U_1U_2U_3U_4)$

Analytic continuation in time $t \rightarrow -it$

- Minkowski space-time \longrightarrow 4d Euclidean space
- $e^{iLt} \rightarrow e^{-Ht}$
- Physical quantities = statistical averages
- Monte Carlo numerical simulation
- temporally finite box of size L_t \longrightarrow finite temperature $T = 1/L_t$

Lattice Dirac operator

• Partition function (integrating out quarks):

$$Z = \int \mathscr{D} \psi \mathscr{D} \bar{\psi} \mathscr{D} U e^{-S_{g}[U] - \bar{\psi} \{D[U] + M\} \psi}$$

 $= \int \mathscr{D}U \, det \{ D[U] + M \} \cdot e^{-S_{g}[U]}$

- Statistical physics system (4-dimensional)
- Dynamical variables: $U_i \in SU(N_c)$ on lattice links

Dirac operator: *D*[*U*]

- Discretized differential operator depending on U-s
- \propto *V* × *V* sparse matrix (*V*–volume)
- $(D[U] + M)^{-1}$ appears in physical quantities
- Small eigenvalues (eigenvectors) physically important

Symmetries of D

 \rightarrow Spectrum imaginary, symmetric around 0

- probability distribution of $[U] \Rightarrow$ random D[U] with given distribution
- distribution of $D[U] \Rightarrow$ physical quantities
- eigenvalue ststistics of $D[U] \Rightarrow$ bulk termodynamics

What do we know about the spectral statistics of D[U]? Is the detailed dynamics important or it is already given by the symmetries?

Spectrum of sparse random matrices

- one-electron Hamiltonian in disorderer crystal
 - random on-site "energies"
 - constant hopping terms to nearest neighbor sites
 - all other matrix elements zero
- localized states at the band edge

delocalized states at the band center

localized ↑ mobility edge

• mobility edge controlled by disorder

Localization and spectral statistics

Level spacing distribution

• Level spacing: $\lambda_{n+1} - \lambda_n$

• Unfolding:
$$s = \frac{\lambda_{n+1} - \lambda_n}{\langle \lambda_{n+1} - \lambda_n \rangle}$$

- Two extremes:
 - λ_n statistically independent (Poisson) $\Rightarrow p(s) = \exp(-s)$
 - Random matrix statistics

How about the Dirac operator?

- $\lambda = 0$ special point (symmetry).
- Transition at $T_c \approx 200 \text{MeV}$:

 $\rho(0) \neq 0 \Rightarrow$ statistics of low eigenvalues of D[U] described by random matrix theory analytically (σ -model) + numerically (lattice QCD)

unfolded level spacing distribution
$$s = rac{\lambda_{n+1} - \lambda_n}{\langle \lambda_{n+1} - \lambda_n
angle}$$

Integrated level spacing distribution

Finite size scaling

verify critical behavior and compute v

• Parameters:

- λ (location in the spectrum) relevant
- μ leading irrelevant
- $I(\lambda, \mu, L)$ dimensionless, RG invariant

•
$$I(\lambda,\mu,L) = I(b^{1/\nu}\lambda, b^{y_{\mu}}\mu, b^{-1}L)$$

- Only one relevant variable
 - Close to the critical point: $b^{\gamma_{\mu}} \mu \approx 0$
 - Block all systems to "standard size" $\rightarrow b \propto L$
- Scaling function:

$$I(\lambda,\mu,L) = f\left(L^{1/\nu}(\lambda-\lambda_{c})\right)$$

• For finite L $I(\lambda)$ analytic $\rightarrow f$ analytic

Finite size scaling

$$I(\lambda,\mu,L) = f\left(L^{1/\nu}(\lambda-\lambda_{\rm c})\right)$$

Is it possible to choose v and λ_c to have data collapse?

Finite size scaling

$$I(\lambda,\mu,L) = f\left(L^{1/\nu}(\lambda-\lambda_{c})\right)$$

Yes! fit polynomial to $f(x) = a_0 + a_1 x + a_2 x^2 + ...$ and λ_c, v

Corrections to scaling

• Use only systems larger than *L*_{min} for the fit

- system sizes: $L^3 = 24^3, 28^3, 32^3, 36^3, 40^3, 48^3, 56^3$
- $56^3 \times 4$ $4 \cdot 10^6$ dimensional

• v compatible with unitary Anderson model

The temperature controls the mobility edge

for fixed lattice size the system gets more ordered! \longrightarrow

Conclusions

- Phase transition or not?
 - The transition to QGP is only a cross-over
 - Have we found a genuine phase transition?
 - No! In QCD no thermodynamic quantity is singular
 - Genuine transition in QCD-like models?
- Relevance of localized Dirac modes in QGP
 - Mobility edge \rightarrow effective gap (like large m_q)
 - Screening masses

References:

- External magnetic field and QCD thermodynamics
 - TGK, PRL 104 (2010); TGK, F. Pittler, PRL 105 (2010);
 - F. Bruckmann, TGK, S. Schierenberg, PRD 84 (2011);
 - TGK, F. Pittler, PRD 86 (2012);
 - M. Giordano, TGK, F. Pittler, PRL 112 (2014)