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PARTICLES IN A FLOW

I Rain drops in clouds
I Marine aggregates (carbon cycle)
I Industrial colloids
I Formation of planets



OUTLINE

I Model
– Flow field – Random flow
– Inertial particles
– Interacting particles in a flow field (aggregation and

fragmentation)
I Results

– Steady state – balance between aggregation ad
fragmentation

– Influence of the flow field



RANDOM FLOW
MIMICKING TURBULENCE AT THE DISSIPATIVE SCALE

turbulent flow





• incompressible, ∇ ·~u(~x, t) = 0

• homogeneous

• isotropic

• stationary

spectrum

correlations

random flow

• Random fourrier modes (Kraichnan)
• Stochastic differential equation



RANDOM FLOW
ORNSTEIN-UHLEMBECK PROCESS
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(wave number),

Kraichnan energy spectrum:

E(k) ∼ k3e−λ2k2

• u0 – mean velocity,

• λ – correlation length,

• λ
u0

= τe – eddy turnover time,

• τ – correlation time,

• wk – Gaussian noise.



RANDOM FLOW
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PARTICLE ADVECTION

I Tracers → vp = uf : "point like"
Follow the flow filed exactly, behave as part of it.

I Inertial particles:
Do not follow the flow field exactly, because of:

Size and Density





Aerosol, ρp > ρf (falls)

Bubbles, ρp < ρf (rises)

There are additional (aerodynamic or hydrodynamic)
forces which act on inertial particles, they have to be
included



FORCES EXERTED ON THE PARTICLE
NEWTON’S LAW

Assumptions and approximations:
I spherical particles (shape is very

important);
I viscous fluid;

I small Rep =
a(u−vp)

ν .

Ftot = Fdrag + Fadded mass + Fgravity + Fhistory



EQUATIONS OF MOTION
INERTIAL PARTICLES – MAXEY-RILAY EQUATIONS

d~V
dt

=
1
St
( ~u − ~V)

︸ ︷︷ ︸
Stokes drag

+ β
D ~u
Dt︸ ︷︷ ︸

Pressure term

−
√

9St
β2π

∫ t
0

d(~V−~u)
dt√
t−τ

dτ

︸ ︷︷ ︸
History (Basset)

St =
r2

3νβ

1
τf

β =
3ρf

ρf + 2ρp

{
β < 1 aerosols

β > 1 bubbles

I r — particle radius

I ν — kinetic viscosity

I τf — time scale of
the flow

I ρp — particle density

I ρf — fluid density



EFFECTS OF INERTIA

Preferential concentration – centrifugal effect

– Aerosols avoid the regions of high
vorticity (green dots)

– Bubbles are trapped by the regions of
high vorticity (red dots)

Caustics

– Particles with very different velocities
close to each other in space

– Increase of the collision rates



STOKES NUMBER
ASYMPTOTICS

St→ 0

~u(~x, t) ∼ ~vp and the
particle becomes a tracer.

St→ ∞
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ERGODIC VS NON-ERGODIC CLUSTERING
EFFECTS OF THE FLOW

Capacity dimension, D0 of the spatial distribution of particles.
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AGGREGATION AND FRAGMENTATION DYNAMICS
STEADY-STATE SIZE DISTRIBUTION

Advection −→ Aggregation −→ Fragmentation

αi – size class, composed by i unit particles

α1 α2 α3 α4 α5 . . . αn

Aggregation:

αi + αj → αi+j

• All particle collisions result in
aggregation

Fragmentation:

αi+j → αi + αj

• Due to forces in the flow

• Binary (two fragments)

• Cascade of fragmentation events



FRAGMENTATION
CRITICAL SHEAR

Particles break when the shear forces of the flow exceed the
binding forces.

Sij =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi

)

S = (2SijSji)
1/2

Scrit = γα−1/3
i

αi – particle size class
γ – binding strength

If Sflow(X) > Scrit → break.
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LOCATION OF EVENTS
SHEAR FORCES OF THE FLOW
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preferential concentration −→ aggregation

changes of Scr(α, x1, x2, t) −→ fragmentation



AGGREGATES SIZE DISTRIBUTIONS
BINDING STRENGTH (γ) AND TIME SCALE OF THE FLOW (τ)
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SIZE DISTRIBUTIONS
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CONCLUSIONS

I Importance of the fragmentation rates
I The fragmentation rate depends on the flow properties, Ku
I For Ku ∼ 1, the fragmentation results from the interplay of

the sampling of coherent flow structures and of the local
changes of the flow

I The fragmentation by local forces in the flow segregates
the particles by sizes, increasing the collision rates between
similar particles
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