Hogyan befolyásolja a részecskék alakja a nyírt szemcsés anyagok sűrűségét?

Somfai Ellák Szabó Balázs Börzsönyi Tamás Wigner FK SZFI

Sandra Wegner Axel Boese Georg Rose Ralf Stannarius

Universität Magdeburg

Soft Matter, accepted (2014)

Introduction – Deforming granular materials

 deformation of granular media: shear (jamming transition...)

Introduction – Deforming granular materials

- deformation of granular media: shear (jamming transition...)
- Reynolds dilatancy

www.abc.net.au

Introduction – Shear induced alignment

Log jam

mathisencorollary.blogspot.hu

Somfai Ellák

Részecske alak következménye nyírt szemcsés anyagokban

Introduction – Shear induced alignment

Log jam

mathisencorollary.blogspot.h

Shear alignment

Rice

Bacteria

Liquid crystals

Somfai Ellák

Részecske alak következménye nyírt szemcsés anyagokban

Introduction – Shear induced alignment

- ullet average orientation extends small angle $heta_{\mathrm{av}}$ with streamlines
- $\theta_{\rm av}$ is independent of shear rate over 3 decades in quasistatic regime, and decreases with L/d
- similarities with nematics

Börzsönyi, Szabó, Törös, Wegner, Török, Somfai, Bien, Stannarius: Phys. Rev. Lett. (2012) Börzsönyi, Szabó, Wegner, Harth, Török, Somfai, Bien, Stannarius: Phys. Rev. E (2012)

Experimental setup

particles:

- wooden "pegs": Q = L/d = 5, 3.3, 2
- chocolate lentils: h/d = 0.45
- airsoft ammunition (monodisperse spheres)
- peas

Experimental setup – x-ray CT

Inka Angio Lab, Univ. Magdeburg

Resolution:

- pixel spacing 0.5 mm or 0.68 mm
 - (less than) $512 \times 512 \times 386$ pixels
 - intensity values: x-ray absorption

Experimental setup – 3d reconstruction

thresholding

Otsu's method

- + CPU-cheap, high resolution 3d density
- no individual particle positions
- particle detection

"watershed" algorithm

fine tuned for relatively low resolution detection of identical particles

- + individual particle position and orientation data
- CPU-expensive, some particle loss (typical < 1%)
 3d density reconstruction difficult

Results – individual particle motion

• Creeping motion outside shear zone

Somfai Ellák

Results – packing density in the stationary state

packing density

Somfai Ellák

Részecske alak következménye nyírt szemcsés anyagokban

Results – packing density in the stationary state

 Density is smaller in shear zone than in neighboring regions except: monodisperse spheres

Somfai Ellák

Részecske alak következménye nyírt szemcsés anyagokban

Results – time evolution (rods Q = 5)

Részecske alak következménye nyírt szemcsés anyagokban

Results – time evolution – density

• all shapes: initial density drop (Reynolds dilatancy)

• non-spherical: subsequent density increase (shear alignment)

Somfai Ellák

Részecske alak következménye nyírt szemcsés anyagokban

Results - time evolution - density and height profile

Részecske alak következménye nyírt szemcsés anyagokban

Results – crystallisation of monodisperse spheres

Results – crystallisation of monodisperse spheres

- chains of particles along streamlines
- hexagonal arrangement of the chains
- sides ≈ d in direction of velocity gradient
 sides < d (slight interpenetration) in direction of no velocity gradient

Results – pair distribution functions

- peas: (nearly spherical, slightly polydisperse) quickly decaying pair distribution function
- airsoft balls: (monodisperse spheres) slowly decaying oscillation converging to value > 1: long range order

Somfai Ellák

Conclusions

- density evolution in shear zone:
 - initial drop Reynolds dilatancy
 - nonspherical shapes: subsequent partial rebound shear induced alignment
- height profile evolution:
 - initial elevation above shear zone + heaps on both sides
 - nonspherical shapes: collapse above shear zone
- opsitional ordering:
 - monodisperse spheres:
 chains of particles along streamlines
 hexagonal arrangement of the chains
 long range order visible in pair distribution function
 - even few % polydispersity prevents ordering