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Finiteness Physics

Avogadro number (atoms in classical matter) ∼ 6 · 1023

Heavy ion collisons ∼ 600− 6000

Elementary high energy collisions (pp) ∼ 6− 60

General expectation:
smaller size→ larger relative fluctuations.

B.B.V.U. Reservoir Fluctuations 2 / 44



Temperature and Energy Fluctuations
Finite Heat Bath Effects

LHC spectra vs multiplicity
Summary

Backup Slides

J.Uffink, J.van Lith: Thermodynamic Uncertainty Relations;

Found.Phys.29(1999)655

”Bohr and Heisenberg suggested that the thermodynamical

fluctuation of temperature and energy are complementary in the

same way as position and momenta in quantum mechanics.”
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B.H.Lavenda: Comments on "Thermodynamic Uncertainty Relations"

by J.Uffink and J.van Lith; Found.Phys.Lett.13(2000)487

”Finally, the question about whether or not the temperature

really fluctuates should be addressed. ... If the energy

fluctuates so too will any function of the energy, and that

includes any estimate of the temperature.”
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J.Uffink, J.van Lith: Thermodynamic Uncertainty Relations Again:

A Reply to Lavenda; Found.Phys.Lett.14(2001)187

”In this interpretation, the uncertainty ∆β merely reflects one’s

lack of knowledge about the fixed temperature parameter β.

Thus β does not fluctuate.”

”Lavenda’s book uses these ingredients to derive the

uncertainty relation ∆β ·∆U ≥ 1. Our paper observes that, on

the same basis, one actually obtains a result even stronger

than this, namely ∆β ·∆U = 1.”
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Outline

1 Temperature and Energy Fluctuations

2 Finite Heat Bath Effects

3 LHC spectra vs multiplicity
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Gaussian Approximation
Deficiences of the Gaussian
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Gaussian Approximation
Deficiences of the Gaussian

Variances of functions of distributed quantities

Let x be distributed with small variance and 〈x〉 = a. Consider a
Taylor expandable function

f (x) = f (a) + (x − a)f ′(a) +
1
2

(x − a)2f ′′(a) + . . .

Up to second order the square of it is given by

f 2(x) = f 2 + 2(x − a)ff ′ + (x − a)2 [f ′f ′ + ff ′′
]

+ . . .

denoting f (a) shortly by f . Expectation values as integrals deliver

〈f 〉 = f +
1
2

∆x2f ′′ 〈f 〉2 = f 2+∆x2ff ′′ 〈f 2〉 = f 2+∆x2(f ′f ′+ff ′′)

Finally we obtain ∆f = |f ′|∆x
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Gaussian Approximation
Deficiences of the Gaussian

One Variable EoS: S(E)

Product of variances
∆E ·∆β = 1 (1)

Connection to the (absolute) temperature:

|C|∆T · ∆T
T 2 = 1 (2)

Relative variance scales like 1/SQRT of heat capacity!

∆T
T

=
∆β

β
=

1√
|C|

(3)

C is proportional to the heat bath size (volume, number of degrees of
freedom) in the thermodynamical limit.
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Gaussian Approximation
Deficiences of the Gaussian

Deficiences of the Gauss picture

1 w(β) > 0 for β < 0 (finite probability for negative
temperature)

2 〈e−βω〉 is not integrable in ω (it cannot be a canonical
one-particle spectrum)
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Ideal Gas
Deformed Entropy Formulas

Outline

1 Temperature and Energy Fluctuations

2 Finite Heat Bath Effects
Ideal Gas
Deformed Entropy Formulas

3 LHC spectra vs multiplicity
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Ideal Gas
Deformed Entropy Formulas

Ideal Gas: microcanonical statistical weight

The one-particle energy, ω, out of total energy, E , is distributed
according to a statistical weight factor which depends on the
number of particles in the reservoir, N:

P1(ω) = phase space factor(ω) ·
(

1− ω

E

)N
(4)

Superstatistics: N itself has a distribution (based on the physical
model of the reservoir and on the event by event detection of the
spectra).
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Ideal Gas
Deformed Entropy Formulas

Ideal Reservoir: bosons or fermions

n particles among k cells: bosons
(n+k

n

)
, fermions

(k
n

)
ways.

(Negative) binomial distribution: a subspace (n, k) out of (N,K ) in the
limit K →∞ and N →∞ while f = N/K is fixed.

Bn,k (f ) := lim
K→∞

(n+k
n

)(N−n+K−k
N−n

)(N+K +1
N

) =

(
n + k

n

)
f n(1 + f )−n−k−1.

(5)

Fn,k (f ) := lim
K→∞

(k
n

)(K−k
N−n

)(K
N

) =

(
k
n

)
f n(1− f )k−n. (6)
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Norm and Pascal triangle

Binomial expansion:

(a + b)k =
∞∑

n=0

(
k
n

)
anbk−n (7)

Replace k by −k − 1 and a by −a, noting that
(−k − 1

n

)
=

(−k − 1)(−k − 2) . . . (−k − n)

n!
= (−1)n (k + 1)(k + 2) . . . (k + n)

n!
= (−1)n

(n + k

n

)
.

we arrive at

(b − a)−k−1 =
∞∑

n=0

(
n + k

n

)
anb−n−k−1 (8)
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Ideal Gas
Deformed Entropy Formulas

Bosonic reservoir

Reservoir in hep: E is fixed, N fluctuates according to NBD.

∞∑
N=0

(
1− ω

E

)N
BN,K (f ) =

(
1 + f

ω

E

)−K−1
(9)

Note that 〈N〉 = (K + 1)f for NBD. Then with T = E/〈N〉 and
q − 1 = 1

K +1 we get (
1 + (q − 1)

ω

T

)− 1
q−1

This is exactly a q > 1 Tsallis-Pareto distribution.
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Fermionic reservoir

E is fixed, N is distributed according to BD:

∞∑
N=0

(
1− ω

E

)N
FN,K (f ) =

(
1− f

ω

E

)K
(10)

Note that 〈N〉 = Kf for BD. Then with T = E/〈N〉 and
q − 1 = − 1

K we get (
1 + (q − 1)

ω

T

)− 1
q−1

This is exactly a q < 1 Tsallis-Pareto distribution.
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Boltzmann limit
In the K � N limit (low occupancy in phase space)

(N + K

N

)
f N (1 + f )−N−K−1 −→

K N

N!

( f

1 + f

)N
. . .

(K

N

)
f N (1− f )K−N −→

K N

N!

( f

1− f

)N
. . . (11)

After normalization this is the Poisson distribution:

Πn(x) =
〈N〉N

N!
e−〈N〉 with 〈N〉 = K

f
1± f

(12)

The result is exactly the Boltzmann-Gibbs weight factor:

∞∑
N=0

(
1− ω

E

)N
ΠN(〈N〉) = e−ω/T . (13)
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Ideal Gas
Deformed Entropy Formulas

Experimental NBD distributions PHENIX PRC 78 (2008) 044902

Au + Au collisons at
√

sNN = 62 (left) and 200 GeV (right). Total
charged multiplicities.

K ≈ 10→ 20.
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Ideal Gas
Deformed Entropy Formulas

Summary of ideal reservoir fluctuations

In all the three above cases

T =
E
〈N〉

, and q =
〈N(N − 1)〉
〈N〉2

(14)
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Ideal Gas
Deformed Entropy Formulas

Ideal gas with general reservoir fluctuations

Canonical approach: expansion for small ω � E .
Tsallis-Pareto distribution as an approximation:(

1 + (q − 1)
ω

T

)− 1
q−1

= 1− ω

T
+ q

ω2

2T 2 − . . . (15)

Ideal reservoir phase space up to the subleading canonical limit:

〈
(

1− ω

E

)N
〉 = 1− 〈N〉ω

E
+ 〈N(N − 1)〉 ω

2

2E2 − . . . (16)

To subleading in ω � E

T =
E
〈N〉

, q =
〈N(N− 1)〉
〈N〉2

= 1−
1
〈N〉

+
∆N2

〈N〉2
. (17)
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Ideal Gas
Deformed Entropy Formulas

General system with general reservoir fluctuations
Canonical approach: expansion for small ω � E .

〈eS(E−ω)−S(E)〉ω�E = 〈e−ωS′(E)+ω2S′′(E)/2−...〉 (18)

= 1− ω〈S′(E)〉+
ω2

2
〈S′(E)2 + S′′(E)〉 − . . . (19)

Compare with expansion of Tsallis(
1 + (q − 1)

ω

T

)− 1
q−1

= 1− ω

T
+ q

ω2

2T 2 − . . . (20)

Interpret the parameters

1
T

= 〈S′(E)〉, q = 1− 1
C

+
∆T 2

T 2 (21)

with 〈S′′(E)〉 = −1/CT 2 expressed via the heat capacity of the reservoir, 1/C = dT/dE .
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Ideal Gas
Deformed Entropy Formulas

Understanding the parameter q in terms fluctuations

Opposite sign contributions from 〈S′ 2〉 − 〈S′〉2 and from 〈S′′〉.
In all cases approximately

q = 1−
1
C

+
∆T 2

T 2
.

q > 1 and q < 1 are both possible
for Gaussian temperature fluctuations q = 1
for any relative variance ∆T/T = 1/

√
C it is exactly q = 1

for ideal gas and C distributed as NBD or BD, the Tsallis
form is exact
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Ideal Gas
Deformed Entropy Formulas

Deformed entropy K (S)

Use K (S) instead of S to gain more flexibility for handling the
subleading term in ω!

〈eK (S(E−ω))−K (S(E))〉 = 1− ω〈 d
dE

K (S(E))〉

+
ω2

2
〈 d2

dE2 K (S(E)) +

(
d

dE
K (S(E))

)2

〉 (22)

Note that

d
dE

K (S(E)) = K ′S′,
d2

dE2 K (S(E)) = K ′′S′ 2 + K ′S′′ (23)

Compare this with the Tsallis power-law!
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Ideal Gas
Deformed Entropy Formulas

Tsallis parameters for deformed entropy

Using previous average notations and assuming that K (S) is
independent of the reservoir fluctuations (universality):

1
TK

= K ′
1
T
,

qK

T 2
K

=
(

K ′′ + K ′ 2
) 1

T 2

(
1 +

∆T 2

T 2

)
− K ′

1
CT 2 . (24)

By choosing a particular K (S) we can manipulate qk .
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Ideal Gas
Deformed Entropy Formulas

Best handling of subleading terms: UTI principle

Not considering reservoir fluctuations ∆T/T = 0.

Applying our previous general result we obtain

qK = 1 +
K ′′

K ′ 2
− 1

C K ′
(25)

One arrives at the original Universal Thermostat Independence
(UTI) diff. equation by demanding qK = 1:

K ′′

K ′
=

1
C
. (26)
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Ideal Gas
Deformed Entropy Formulas

Deformed entropy formula T.S.Biró, P.Ván, G.G.Barnaföldi, EPJA 49: 110, 2013

For ideal gas C is constant, without reservoir fluctuations
C = 1/(1− q).

The solution of eq.(26) with K (0) = 0, K ′(0) = 1 delivers

K (S) = C
(

eS/C − 1
)

(27)

and one arrives upon using K (S) =
∑

i piK (− ln pi ) at the statistical
entropy formulas of Tsallis and Rényi:

K (S) =
1

1− q

∑
i

(
pq

i − pi
)
, S =

1
1− q

ln
∑

i

pq
i (28)
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Deformed formula with reservoir fluctuations

Demanding qK = 1 one obtains the diff.eq.

∆T 2

T 2 K ′ 2 − 1
C

K ′ +
(

1 +
∆T 2

T 2

)
K ′′ = 0. (29)

First integral (with constant λ and C∆ )

K ′(S) =
1

(1− λ)e−S/C∆ + λ
(30)

with λ = C∆T 2/T 2 and C∆ = C + λ.

Second integral

K (S) =
C∆

λ
ln
(

1− λ+ λeS/C∆

)
. (31)
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Generalized Tsallis formula

K (S) =
C∆

λ

∑
i

pi ln
(

1− λ+ λp−1/C∆

i

)
. (32)

For λ = 1 (Gaussian fluctuations) it is exactly the Boltzmann entropy!

For λ = 0 (no fluctuations in reservoir) it is exactly Tsallis entropy with
q = 1− 1/C.

For λ→∞ (very large fluctuations – and arbitrary C(S)! ) it is

K (S) = ln (1 + S) =
∑

i

pi ln (1− ln pi ) . (33)

The canonical pi distribution is LambertW, it shows tails like the
Gompertz distribution
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Canonical distribution for λ→∞

∂K (S)

∂pi
= ln (1− ln pi) + pi

(−1/pi)

1− ln pi
(34)

Denote x = − ln pi > 0; then we have

∂K
∂pi

= ln(1 + x)− 1
1 + x

= α + βωi . (35)

It is worth to plot and study
F (x) = ln(1 + x) + 1− 1

1+x = 1 + α + βωi .
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High probability (small x = − ln pi)

From
F (x) = 2x − 3

2
x2 + . . . (36)

it follows
pi ≈ e−

1
2 (1+α+βωi ) (37)

This is a Botzmann-Gibbs statistical factor, just the Lagrange
multiplier β = 2/T looks different.
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Low probability (large x = − ln pi)

From
F (x) = ln x +

1
2x2 + . . . (38)

it follows that
pi = e−eα+βωi (39)

The 1-CDF of the Gompertz distribution arises as

p(ωi)

p(0)
= e eα (1−eβωi ) (40)
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Gompertz distribution: a wiki

About the Gompertz distribution: PDF f (t), CDF
F (x) =

∫ x
0 f (t)dt = eη(1−ebt ), mean, mode, variance , MGF

〈e−sx〉, etc.

Applications

Demography: life-expectation shortens at high age
Oncology: tumor growth rate is exponential
Geophysics: scaling violation for earthquakes with large
magnitudes
Statistics: extreme value distribution (1-CDF)
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Statistical vs QCD power-law

QCD power-law: constant power (K + 1) > 4 (conformal
limit)
statistical power: (K + 1) = 〈N〉/f ∝ reservoir size
data fits: ALICE LHC K + 1 powers vs Npart

soft and hard power-laws differ for large Npart
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Soft and Hard Tsallis fits: ALICE PLB 720 (2013) 52

change at pT = 4 GeV.
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Trends with Npart
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Summary

There are S′(E)-temperature fluctuations due to finite reservoirs;
they cannot be Gaussian.

Ideal gas reservoirs with NBD or BD number fluctuations lead to
exact Tsallis distributions: q = 1

k+1 and q = 1− 1
k .

Tsallis distribution is the approximate canonical weight with
fluctuating reservoirs: q = 1− 1/C + ∆T 2/T 2 .

New entropy formula; for infinite temperature fluctuations at finite
heat capacity it is parameter – free.

K (S) =
∑

i

pi ln (1− ln pi) .
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Outlook

Need for realistic modelling of the finite heat bath in heph.
Adiabatically expanding systems have CS not CV .
Non-extensivity must mean a finite q − 1 even for infinite V
or N.
We have a procedure for general deformed entropy
formulas.
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Binary Entropy in the Gompertz limit
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K (S)-additive composition rule

With the result (31) for K (S) the composition rule becomes

h(S12) = h(S1) + h(S2) +
λ

C∆
h(S1)h(S2) (41)

with
h(S) = C∆

(
eS/C∆ − 1

)
. (42)

This is a combination of the ideal gas entropy-deformation,
h(S) and an original Tsallis composition law with q − 1 = λ/C∆.
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Ideal Photon Gas: Basic Quantities

Thermodynamic quantities from parametric Equation of State

E = σT 4V , pV =
1
3
σT 4V

Gibbs equation

TS = E + pV =
4
3
σT 4V

Entropy and Photon Number

S =
4
3
σT 3V , N = χσT 3V .

B.B.V.U. Reservoir Fluctuations 39 / 44
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Ideal Photon Gas: Differentials

dE = 4σT 3VdT + σT 4dV

dp =
4
3
σT 3 dT

dS = 4σT 2VdT +
4
3
σT 3dV

dN = 3χσT 2VdT + χσT 3dV
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Ideal Photon Gas: Heat Capacities

BLACK BOX scenario (V=const.)

CV = 4σT 3V = 3S = 4χN,
∆T
T

∣∣∣∣
V

=
1

2
√
χN

ADIABATIC EXPANSION scenario (S=const.)

CS = σT 3V =
1
4

CV ,
∆T
T

∣∣∣∣
S

=
1√
χN

IMPOSSIBLE scenario (p=const.)

Cp =∞, ∆T
T

∣∣∣∣
p

= 0
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Ideal Photon Gas: Relations between Variances

Always: ∆S
S = ∆N

N

BLACK BOX (V=const.): ∆V
V = 0 ∆N

N = 3 ∆T
T

ADIABATIC (S=const.): ∆V
V = 3 ∆T

T
∆N
N = 0

ENERGETIC (E=const.): ∆V
V = 4 ∆T

T
∆N
N = 7 ∆T

T

Volume or temperature fluctuations or both?
Gorenstein,Begun,Wilk,...
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Several Variables: S(E ,V ,N, . . .) = S(Xi)

Second derivative of S wrsp extensive variables Xi constitutes
a metric tensor g ij .

It describes the variance ∆Y i∆Y j with Y associated intensive
variables.

Its inverse tensor gij comprises the variance squares and mixed
products for the Xi -s.
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How to measure all this ?

Fit Euler-Gamma or cut power-law =⇒ T ,C
Check whether ∆T/T = 1/

√
C

If two different C-s, imply "sub + res" splitting

Check E and ∆E by multiparticle measurements
Vary T by

√
s and C by Npart
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