A RePLaT modell és alkalmazása légköri szennyeződések terjedésének vizsgálatára

Haszpra Tímea

Környezettudományi Doktori Iskola, Környezetfizika program MTA–ELTE Elméleti Fizikai Kutatócsoport

Témavezetők: Tél Tamás, ELTE Elméleti Fizikai Tanszék Horányi András, OMSZ, ECMWFKonzulens: Tasnádi Péter, ELTE Meteorológiai Tanszék

2014. február 26. ELTE házivédés

Légköri szennyeződések

- vulkánkitörések, légszennyezés → légköri áramlások → sodródás, keveredés, ülepedés
- *Eyjafjallajökull* (Izland) 2010. tavasz
- Fukushima (Japán) 2011. tavasz
 ... stb.
- a szennyeződések a forrástól távolabbra is eljuthatnak

Terjedési modellek

- euleri modellek: Földhöz rögzített koordinátarendszerben, rácshálózaton
- lagrange-i modellek: trajektóriák (részecskék/pöff/levegőcella)*
 - "álrészecskék" (számítási részecskék)
 - a pontszerű részecskék a szélmezővel sodródnak
 - a részecskékhez mesterséges tömeg tartozik (pl. 1 kg), időben változik → a tömeg az ülepedéssel exponenciálisan csökken: ∆m/∆t = -C·m
 - gravitációs ülepedés?
 - pl.: FLEXPART, HYSPLIT, NAME, SNAP, GEARN, MLDP0

Terjedési modellek

lagrange-i modellek: trajektóriák (részecskék/pöff/levegőcella)

- valódi részecskék

- a reszecskeknez valóságnak megfelelő méret és sűrűség (tömeg) tartozik pl. r = 1 μm, ρ = 2000 kg/m³
- a részecskék mozgását a légköri áramlások és a határsebesség adja meg
- pl.: PUFF, VAFTAD
- vulkáni hamu terjedésének gyors előrejelzésére
- nincs csapadék általi kimosódás és esetleg turbulens diffúzió sem

RePLaT modell

(Real Particle Lagrangian Trajectory modell)

- valódi részecskéket követő lagrange-i terjedési modell
 - valóságnak megfelelő ρ sűrűségű és r sugarú aeroszol részecskék
 - + csapadék általi kimosódás és turbulens diffúzió

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \mathbf{v}_{\mathrm{air}} + w_{\mathrm{term}}\mathbf{n} + \boldsymbol{\xi} \cdot \mathbf{D}(\mathbf{r})$$

D(r) turbulens diffúzió n függőleges egységvektor $\operatorname{Re} = \frac{2r |\mathbf{v} - \mathbf{v}_{\operatorname{air}}|}{\operatorname{Reynolds-szám}}$

 $w_{\text{term}} = \begin{cases} -\frac{2}{9} \frac{\rho r^2 g}{\rho_{\text{air}} v}, \text{ ha Re } <<1 & \leftarrow \text{Stokes-törvényből} \\ (\text{aeroszol részecskék}, r = 1-10 \ \mu\text{m}) \\ -\sqrt{\frac{8}{3}} \frac{\rho r g}{\rho_{\text{air}} C_{\text{d}}}, \text{ ha Re } >>1 & \leftarrow \text{négyzetes közegellenállás} \\ (\text{esőcseppek}) \end{cases}$

határsebesség: $\mathbf{F}_{drag} + m\mathbf{g} = 0$

fehérzaj

RePLaT modell

(Real Particle Lagrangian Trajectory modell)

nedves ülepedés

euleri szemléletben:

 $\frac{\mathrm{d}n}{\mathrm{d}t} = -k_{\mathrm{W}}n$

k_w nedves ülepedési együttható, kimosódási együttható

 $1 - \frac{n(\Delta t)}{n(0)} = 1 - \exp(-k_{\rm W}\Delta t) \leftarrow \text{kiesik}$

egy részecske $p = 1 - \exp(-k_w \Delta t)$ valószínűséggel esőcseppbe kerül

 $k_{\rm w}, r_{\rm rain}$: *P* csapadékintenzitástól függ $\rho_{\rm rain} = 1000 \text{ kg/m}^3$

 $\frac{n(\Delta t)}{n(0)} = \exp(-k_{\rm W}\Delta t) \leftarrow \text{bent}$

csapadék szerepe: 850 hPa alatt

Adatok, módszerek

- szélmező és egyéb adatok:
 - ERA Interim adatbázis (ECMWF*): 0,5 °×0,5°/1,5°×1,5°, 6 óra
 - ECMWF előrejelzések: 0,125 °×0,125°/ 0,25 °×0,25°, 3 óra
 - * European Centre for Medium-Range Weather Forecasts
- mozgásegyenletek λ , φ , p változókkal
- interpoláció a részecskék helyére
 - vízszintesen: biköbös spline
 - függőlegesen és időben: lineáris
- differenciálegyenletek numerikus megoldása Euler-módszerrel

Mozgásegyenletek

[Visser (1997)]

$$\lambda(t + \Delta t) = \lambda(t) + \frac{u_{\text{air}}}{R_{\text{E}} \cos \varphi} \Delta t + \xi \sqrt{24K_{\lambda}\Delta t}$$

$$\varphi(t + \Delta t) = \varphi(t) + \frac{v_{\text{air}}}{R_{\text{E}}} \Delta t + \xi \sqrt{24K_{\varphi}\Delta t}$$

$$p(t + \Delta t) = p(t) + (\omega_{\text{air}} + \omega_{\text{term}})\Delta t + \xi \sqrt{24K_p \Delta t} + \frac{\partial K_p}{\partial p} \Delta t$$

$$K_{\lambda} = \frac{K_{x}}{\left(R_{E}\cos\varphi_{p}\right)^{2}}$$
$$K_{\varphi} = \frac{K_{y}}{\left(R_{E}\right)^{2}}$$

 ξ : [-0,5; 0,5] egyenletes eloszlás K_x , K_y : állandó vízszintes turb. diff. együtthatók $K_p \leftarrow K_z$: Monin–Obukhov-féle hasonlósági elmélet

Esettanulmányok

Eyjafjallajökull-szimuláció (2010. május 8–19.)

T2

[http://www.eumetsat.int/Home/Main/Image_Gallery/Topical_Image s/index.htm?l=en]

Az eredmények összevetése mérési adatokkal

Fukushima-szimuláció

T2

A meteorológiai mezők bizonytalanságának hatása

Ensemble előrejelzések

- - kezdeti feltételek: mérések pontossága, adathiány, hibás adatok, ritka és nem egyenletes eloszlású mérési hálózat
 - meteorológiai modell által figyelembe vett folyamatok, fizikai parametrizációk
 - numerikus közelítések
 - → bizonytalanságok

Û

- kis perturbációk → ensemble (sokasági, valószínűségi) előrejelzés
 - ECMWF: 50 perturbált tag + 1 kontroll tag
 - nagyfelbontású (determinisztikus) előrejelzés felbontása 2x akkora, mint az ensemble tagoké

A meteorológiai bizonytalanság szerepe

fekete: nagyfelbontású színes: ensemble tagok

- térbeli eloszlás 2,5 nap elteltével
- 2011. márc. 12. 0 UTC +2,5 nap szélmező
- kezdeti feltételek:
 - $n_0 = 300^2$ db, $\rho_p = 2000$ kg/m³, r = 0-10 μm aeroszol részecske
 - 1°×1° területen, p_0 = 500 hPa (*z* ≈ 5,5 km)
 - Fukushima fölött: λ = 141°, φ = 37,5°

 szimulációk: nincs turb. diff. nincs csapadék

A meteorológiai bizonytalanság szerepe

fekete: nagyfelbontású színes: ensemble tagok

 az ensemble előrejelzés felhői között jelentős függőleges és vízszintes különbségek

T3

- szennyeződésfelhők függőleges eloszlása:
- az ensemble előrejelzés felhői 5–10szer akkora terület felett terülnek el, mint a nagyfelbontású előrejelzés felhője
- szennyeződésfelhők vízszintes eloszlása:

A meteorológiai bizonytalanság szerepe: statisztikai jellemzők

tömegközéppont, szórás

- az egyes ensemble felhők tömegközéppontja: kék: levegőben piros: kiülepedett
- a teljes ensemble előrejelzésre:
 cián: levegőben
 sárga: kiülepedett
- sugár: arányos (1/70) a részecskék tkp. körüli szórásával
 35–960 km

 $r = 1 \ \mu m$

A meteorológiai bizonytalanság szerepe: statisztikai jellemzők

where the second s

részecske-hasonmások átlagos négyzetes távolsága

- részecskék saját, a többi ensemble tagban lévő ≤50 hasonmásától vett átlagos négyzetes távolsága (n = 90 000 részecskére)
- az eltérés annál nagyobb, minél kisebbek r
- ensemble tagok közötti
 lagrange-i változékonyság
 2–3-szor > met. előrejelzések
 változékonyságánál

A kaotikus sodródás jellemzői a légkörben

A szennyeződésfelhők nyúlása Esettanulmány (0, 2, 4, 6, 8, 10 nap)

Т4

 $L_0 = 3^\circ \approx 333$ km meridionális vonaldarab

 $n_0 = 2 \cdot 10^5$ részecske r = 0 (gáz, kicsiny részecskék)

szimulációk:

- nincs turb. diff.
- nincs csapadék

Topologikus entrópia (h)

٢4

where a set where the second second

• óceánban [Thiffeault, 2010]

Topologikus entrópia (*h*) Földrajzi és évszakos eloszlás

T5

DECEMBER-FEBRUÁR

h [nap⁻¹] átlag p = 500 hPa, r = 0 µm, $L_0 = 3^{\circ}$

T5 Topologikus entrópia (*h*) Földrajzi és évszakos eloszlás

- Legnagyobb (0,6–0,9 nap⁻¹)
 közepes szélességeken (főként télen)
 ①
 ciklonok erős keverési és nyírási hatása
 a részecskékre
- *Legkisebb* (0,2–0,5 nap⁻¹) trópusok
- t = 10 nap h = 0,65 nap⁻¹ → 670 L_0 $\Delta h = 0,7$ nap⁻¹ → 1100 L_{max}/L_{min}

Topologikus entrópia *h* függése *r*-től, *p*₀-tól, a turbulens diffúzió szerepe

 átlagos h az r-től nem függ jelentősen, p₀-tól kis mértékben függ

T5

 turbulens diffúzió figyelembevétele nem befolyásolja jelentősen a h értékét

 vulkáni hamu terjedésének, szerkezetének jellemzésére

T6 A részecskék kiülepedésnek ütemeSzökési ráta (κ)

Szökési ráta (κ) κ függése *r*-től és *p*₀-tól

Γ6

n(t)~ $\exp(-\kappa_{\rm s}t)$, $\exp(-\kappa_{\ell}t)$ n_0

 κ_{s} : rövidtávú szökési ráta a részecskék többségét jellemzi

 κ_{ℓ} : hosszútávú szökési ráta a sokáig légkörben maradó részecskéket jellemzi → jól elkeveredtek már

Szökési ráta (κ) κ függése *r*-től

- *legnagyobb:* ha se csap., se turb. diff.
- *legkisebb:* ha van csap., turb. diff.
- **csapadék** $\rightarrow \kappa(r)$ nő minden *r*-re
 - turbulens diffúzió: $r < 5 \ \mu m \rightarrow \kappa(r) n \ddot{0}$ $r \approx 5-10 \ \mu m \rightarrow \kappa(r) csökken$ \widehat{U} $\partial K_z / \partial z$ (turbulens advekció)előjele és nagysága

n(t)~ $\exp(-\kappa_{s}t)$, $\exp(-\kappa_{\ell}t)$ n_0

 $\kappa_{s}(r), \kappa_{\ell}(r) \sim \exp(kr)$

Tartózkodási idő (τ) a káosz átlagos élettartama

Γ7

$\left| \begin{array}{c} \tau \text{ a magassággal nő} \\ \tau \sim \exp(-kr) \text{ és } \tau \approx 1/\kappa_{s} \end{array} \right|$

which is a series of the serie

Összefoglalás

- 2. a modell tesztelése az Eyjafjallajökull vulkán és a fukushimai baleset esetén
 - Haszpra, T., Tél, T. (2011): Volcanic ash in the free atmosphere: A dynamical systems approach. Journal of Physics: Conference Series, **333**, 012008.
 - Haszpra T. (2013): Világjáró részecskék a légkörben Az Eyjafjallajökull vulkán kitörésének és a fukushimai balesetnek a tanulságai. Természet Világa, 144, Káosz, környezet, komplexitás különszám, 67–72.

Összefoglalás

- 3. a felhasznált meteorológiai mezőkben rejlő bizonytalanságok hatása a terjedési számításra (ensemble előrejelzés)
 - Haszpra, T., Lagzi, I., Tél, T. (2013): Dispersion of aerosol particles in the free atmosphere using ensemble forecasts. Nonlinear Processes in Geophysics, 20, 5, 759–770.

4–5. a szennyeződésfelhők nyúlását jellemző topologikus entrópia

Haszpra, T., Tél, T. (2013): Topological entropy: a Lagrangian measure of the state of the free atmosphere. *Journal of the Atmospheric Sciences*, **70**, 12, 4030–4040.

6–7. a részecskék kiülepedésének ütemét leíró szökési ráta

Haszpra, T., Tél, T. (2013): Escape rate: a Lagrangian measure of particle deposition from the atmosphere. Nonlinear Processes in Geophysics, 20, 5, 867–881.

Köszönöm a figyelmet!

*