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Motivation and outline

Non-abelian gauge theories are well-known and used a lot

QCD

Fermion content unusual → more than just a UV fixed point

(Physics Beyond Standard Model→ we might need unusual fermion

content)

IR fixed points, more than one UV fixed point, fixed point merger,

....



Non-abelian gauge theory in D = 4 dimensions

Let’s consider SU(N) gauge theory on R4 coupled to Nf flavors of

fermions in representation R

S = −
1

4g2
0

∫
d4xTrFµνFµν +

∫
d4x

∑
f

ψ̄f(D +mf)ψf

Gauge action + fermion action

g0: bare coupling

mf : bare fermion masses



Non-abelian gauge theory in D = 4 dimensions

Gauge sector, Sg = − 1
4g2

0

∫
d4xTrFµνFµν

Aµ(x): N ×N anti-hermitian, traceless, bosonic fields

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν]

Gauge transformation: g(x) ∈ SU(N)

Aµ → gAµg−1 − ∂µg · g−1

Fµν → gFµνg−1

TrFµνFµν = invariant



Non-abelian gauge theory in D = 4 dimensions

Fermion sector, Sf =
∫
d4x

∑
f ψ̄f(D +mf)ψf

D = γµ(∂µ +Aµ) Dirac operator

above Aµ acts in representation R of SU(N)

ψf fermion field

f = 1 . . . Nf number of flavors (or copies)

Sf also gauge invariant



Non-abelian gauge theory in D = 4 dimensions

Often we are interested in mf = 0.

Classically S scale invariant g0 dimensionless

Classically chirally invariant ψ → ψ + iεγ5ψ



Non-abelian gauge theory in D = 4 dimensions

In QFT, formally:

〈O(Aµ, ψ)〉 =

∫
DADψDψ̄ O(Aµ, ψ) e−S∫

DADψDψ̄ e−S

There are divergences → regularization + renormalization

If mf = 0 we only have 1 dimensionless coupling: g0 → gR(µ)



Non-abelian gauge theory in D = 4 dimensions

Everything defined by N,Nf , R.

Questions:

• What about other terms in the action?

• What phases and fixed points are there?

• What is the renormalization group trajectory g2(µ)?

• Relevant/irrelevant operators?

• How does all this depend on N,Nf , R?



Non-abelian gauge theory in D = 4 dimensions

Typical example: QCD: N = 3, Nf = 2 + 1 + 1 + 1 + 1, R = fund

1-loop perturbation theory:

µ
dg

dµ
= β(g) = β1

g3

16π2

β1 = −
11

3
N +

2

3
Nf

Asymptotic freedom: β1 < 0, Nf <
11N

2

This is true with N = 3, Nf = 6



QCD

Fixed points?

β(g∗) = 0→ g∗ = 0 Gaussian UV fixed point

Perturbation theory trustworthy around g∗ = 0

Operators classified as relevant/irrelevant by perturbation theory

Essentially power counting, our action contains all relevant oper-

ators



QCD with large Nf

If β1 > 0 i.e. Nf >
11N

2 not asymptotically free

Trivial theory like φ4 in D = 4



QCD

g(µ) asymptotically free coupling g(µ) ∼ 1/ log(µ/Λ)

Classical action scale invariant, Λ is dynamically generated

Hadron masses ∼ Λ

Scale invariance broken

Also ψ̄ψ ∼ Λ3 6= 0

Chiral symmetry also broken



Non-abelian gauge theory in D = 4 dimensions

Are the above properties true for all asymptotically free N,Nf , R?



Non-abelian gauge theory in D = 4 dimensions

β1 = −
11

3
N +

4

3
T (R)Nf

Here T (R) Dynkin index or trace normalization factor of rep R

So fix Nf <
11N

4T (R)

Properties if QCD-like:

• g∗ = 0 only fixed point, UV

• Scale invariance broken

• Chiral symmetry broken



QCD



Non-abelian gauge theory in D = 4 dimensions

Different features we might find:

• g∗ 6= 0 UV fixed point

• g∗ 6= 0 IR fixed point

• Scale invariance on the quantum level, 4D CFT

• Chirally symmetric phase on the quantum level

• Different classification of operators as relevant/irrelevant, de-

pending on the fixed point



Nf-dependence

Let’s fix N and R

Looking for fixed points on the 2-loop level

β(g) = µ
dg

dµ
= β1

g3

16π2
+ β2

g5

(16π2)2

β1 = −
11

3
N +

4

3
NfT (R)

β2 = −
34

3
N2 +

(
5

3
N + C2(R)

)
4T (R)Nf

g∗ = 0 is still UV fixed point



Nf-dependence

Non-trivial fixed point β(g∗) = 0:

Exists if β1 < 0 and β2 > 0

g∗ = 4π
√
−β1
β2

N low
f = 34N2

4T (R)(5N+3C2(R)) < Nf <
11N

4T (R) = N
up
f

This Nf range is the conformal window

Fixed point g∗ an IR fixed point.



If there is an IR fixed point



Nf-dependence

How trustworthy is this?

N low
f = 34N2

4T (R)(5N+3C2(R)) < Nf <
11N

4T (R) = N
up
f

Upper end of the conformal window: loss of asymptotic freedom

→ perturbation theory is trustworthy, even 1-loop is enough

g∗ = 4π
√
−β1
β2

is small because β1 is small

Lower end of the conformal window: 2-loop is suspect

g∗ = 4π
√
−β1
β2

is large because β2 is small



Nf-dependence

Where we know what we are doing: close to upper end of the

conformal window

E.g. N = 3, R = fund, Nup
f = 16.5

For example Nf = 16 2-loop result is probably okay, a non-trivial

weakly interacting 4D CFT



Nf-dependence

Even though 2-loop result is unreliable for N low
f the lesson is that

there exists an N low
f but we can’t compute it in perturbation theory

Is real N low
f smaller or larger than 2-loop N low

f ?

Probably larger.

As Nf decreases from upper end of conformal window g∗ grows →
if not too large still CFT → as it gets large chiral symmetry breaks

→ scale is generated → conformal symmetry lost → no IR fixed

point → we are outside the conformal window.



Nf-dependence summary

Nf increases from left to right



Note on Nf = 1

Nf = 1 theory special

Chiral anomaly→ SU(Nf)×SU(Nf) chiral group completely broken

by anomaly → no spontaneous breaking → no Goldstone pions →
every mass ∼ Λ



Nf just below lower end of conformal window



Nf-dependence 2. summary

Nf increases from left to right



Nf just above lower end of conformal window

Expect 3 fixed points!

1. gUV 1
∗ = 0 usual UV fixed point

2. gIR∗ 6= 0 IR fixed point

3. gUV 2
∗ 6= 0 new UV fixed point

gUV 1
∗ < gIR∗ < gUV 2

∗

Unfortunately gIR∗ and gUV 2
∗ non-perturbative.



Question to audience

Is there a model in which the β-function has 3 fixed points and all

of them are perturbative i.e. all 3 g∗ are small?



Conformal window

N low
f is non-perturbative

Lattice!

We know a bit about gIR∗ non-perturbatively in some models

We know nothing about gUV 2
∗ unfortunately



Examples

Perturbative 2-loop N low
f

SU(2)

• R : j = 1/2, 5.551... < Nf < 11

• R : j = 1, 1.0625 < Nf < 2.75

• R : j = 3/2, 0.32 < Nf < 1.1



Examples

Perturbative 2-loop N low
f

SU(3)

• R = fund, 8.05... < Nf < 16.5

• R = sextet, 1.224 < Nf < 3.3

• R = adj, 1.0625 < Nf < 2.75

For example R = sextet with Nf = 3 probably also weakly coupled

non-trivial 4D CFT



Inside conformal window

Dynamics very different from outside conformal window

Outside: QCD-like

Inside: CFT



CFT

Gauge coupling irrelevant

Mass term for fermions still relevant

Mass anomalous dimension: γ constant

Dimensionful quantities are zero if m = 0 fermion mass

If m 6= 0 and ψ̄ψ only relevant operator → quantities scale with γ

as a function of m

In 1-loop perturbation theory: γ = 6C2(R) g2
∗

16π2



CFT

Scaling with fermion mass

mH(m) ∼ m
1

1+γ + . . .

σ(m) ∼ m
1

1+γ + . . .

F (m) ∼ m
1

1+γ + . . .

...

Basically dimensional analysis.



CFT

But! We don’t know whether there are other relevant operators

around g∗ 6= 0 IR fixed point!

There could be if γ large

Again perturbation theory is reliable close to upper end of confor-

mal window so we start from there and decrease Nf towards lower

end of conformal window and even though it will be unreliable it

will give useful hints



CFT

(ψ̄ψ)2 4-fermi operator

Irrelevant, dimension 6, around Gaussian UV fixed point

Since ψ̄ψ is dimension 3 − γ, the dimension of 4-fermi operator

close to 6− 2γ in perturbation theory

If γ close to 1 → 4-fermi operator can become relevant!

If perturbation theory reliable (g∗ is small) γ is small, 6 − 2γ still

larger than 4

Again perturbative calculation is just a guide, unreliable where we

need it



CFT

Example: lattice studies indicate this model has IR fixed point

SU(2), Nf = 2, R = adj

γ ∼ 0.3

Smallish coupling, smallish γ, (ψ̄ψ)2 probably irrelevant



Almost CFT

Example: lattice studies indicate this model is just below conformal

window

SU(3), Nf = 2, R = sextet

Running is slow, but no fixed point



Lattice

What we try to do:

Determine N low
f non-perturbatively

Measure non-perturbative β(g)

Measure dependence on m fermion mass

Look at finite T transitions



Lattice methods 1

Measure running coupling g(µ) or β(g)

On lattice: a finite, L finite

Need: 1/L� µ� 1/a separation of 3 scales

Easier: 1/L = µ� 1/a only separate 2 scales

Step scaling, running with µ = 1/L

Finite scale change L→ sL, where s = 3/2 or s = 2 etc.

g2(sL)− g2(L) as a function of g2(L)

Discrete β-function has a zero → IR fixed point



Lattice methods 2

Scaling with m fermion mass

QCD-like: chiral perturbation theory gives small m-dependence,

dictated by pion dynamics, at low energies pions are dominant

degrees of freedom → chiral logs + analytical terms

CFT: scaling with γ

Need to measure mass spectrum, decay constants, etc,

Need: 1/L�M(m)� 1/a

Difficult, because really need 3 separate scales

Or can incorporate finite L behavior



Lattice methods 2

Finite L behavior

QCD-like: finite volume chiral perturbation theory

CFT: finite size scaling, x = Lm
1

1+γ scaling variable, many different

volumes and masses fall on the same universal curve f(x)



Lattice methods 2

Finite T transitions

QCD-like: T = 0 chirally broken, T � 0 chirally symmetric →
transition at T = Tc

CFT: T = 0 scale and chirally symmetric, T � 0 chirally symmetric

→ all T same phase, no Tc

Difficulty: lattice discretized system has fake transitions which are

lattice artifacts, specific to discretization, non-universal



Lattice issues

In order to see IR behavior m: small, L: large

L large: expensive obviously

m small: also expensive, because we need to invert D + m and

condition number of D +m is proportional to 1/m

The larger the fermion content (either large Nf or large dimension

for R) the more expensive the computation is

Over-all: much more expensive than QCD



Lattice issues

Further problems: in interesting models, coupling runs slowly

g2(sL)− g2(L): here each term is O(1), difference is small → large

cancellation → need very small errors



Lattice issues

Major advance in QCD studies: improvements!

Improved gauge action, improved fermion action

Gets us closer to continuum limit by O(an), n = 2,3 etc.

Based on perturbative calculation around UV fixed point

If IR fixed point → we don’t know whether they help or not. Can

make scaling even worse!



Conceptual issues

Transition as Nf changes → we pretend Nf is continuous → it is

not

Only (half)integer Nf are meaningful theories

Maybe intuition from continuous Nf misleading?



Conceptual issues

Maybe there are unexpected relevant operators?

Should be detectable by lack of scaling ...



Summary and conclusion

Tried to explain what type of models we are working on

Didn’t explain why .... Beyond Standard Model, composite Higgs

particle

Tried to explain the context and main challenges

Cond-mat people have much more experience with these kinds of

phenomena, if perhaps not in the same models

Hopefully I can learn something from stat-phys, cond-mat crowd.



Thank you for your attention!


