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| — Example 2: Wind Gusts

Photos from http://members.aol.com/fswemedien/ZZUnfalldatei.htm



wind speed [m/s]

| — Example 2: Wind Gusts

13 |
12

time [s]

Kantz et al., Springer-Verlag (2006).

O 20 40 60 80 100 120 140 160 180 200



| — Example 2: Wind Gusts

1

0.8

0.6

hit rate

0.4

0O 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
false alarms rate

Kantz et al., Springer-Verlag (20006).



Different prediction strategies

&: observation.

=. extreme event.
Strategy I:

maximize the a posteriori PDF p(¢ | =)
(search = look how the & were before)

Strategy ll:
maximize the likelihood PDF p(= | &)

(for a given x look whether a = follows)

Bayes theorem:  p(&, =) = p(¢ [ =) p(2) =p(=]¢) p(&)

For wind speed and ARMA process Strategy Il is superior.
Phys. Rev. E 75, 016706 (2007).




| — Example 3: Earthquakes
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| — Example 3: Earthquakes

Preliminary Determination of Epicenters
358,214 Events, 1963 - 1998

htttp://www.wikipedia.org



N(M>m) [earthquakes/year]

0 I 2 3 4 d 6 7 8
Magnitude m = log, (S)
FIG. 1. The number of earthquakes N(M > m) with a mag-

nitude larger than m per year (open circles). The dashed line is
the Gutenberg-Richter law log,(N(M > m) « —bm,b = 0.95.

Bak et al PRL (2002).



| - Introduction

Reasons for an unified treatment of extreme events:
- statistical characterization of the phenomena.
- prediction procedures.
- risk estimations and precautions.

See Book: “Extreme events in nature and society”, Albeverio, Jentsch,
Kantz (Eds.) Springer, (2006).
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| - Introduction

Reasons for an unified treatment of extreme events:
- statistical characterization of the phenomena.
- prediction procedures.
- risk estimations and precautions.

See Book: “Extreme events in nature and society”, Albeverio, Jentsch,
Kantz (Eds.) Springer, (2006).

Definition of extreme events?
Some necessary conditions:

Large (in some relevant observable)
Rare (otherwise adaptation)
Unexpected (otherwise precaution)
Harmful (otherwise irrelevant)

Classification of extreme events:
extrinsic X intrinsic origin (own dynamics).
recurrent X non-recurrent events.
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Poincaré recurrence theorem (1892): all trajectories of closed Hamiltonian
systems return an infinite number of times to their initial conditions.
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Il — Recurrences in Physics

Poincaré recurrence theorem (1892): all trajectories of closed Hamiltonian
systems return an infinite number of times to their initial conditions.

Zermelo Paradox: the theorem above applied to the systems studied in
statistical mechanics implies a violation of 2™ law of Thermodynamics.

Boltzmann's solution: the mean recurrence time of a typical
thermodynamical system is huge (statistical interpretation of the 2™ law).

Poincaré recurrence (phase space)
X I
recurrence in time series (1-dimension)

Projection of the high-dimensional
phase space to a specific observable
(e.g., the entropy).




I — Recurrences In time series
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Where extreme and non-extreme recurrence intervals are:
[exr(q) — [q’ x[ [(Xcr 5) = [XC_ 0, XC T 5]

And lead to sequences of recurrence times:{ Tl i=1,2, ..., OO}
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(1) The recurrence time distribution (RTD) denoted as P(T) is the probability of finding a
recurrence time Ti=T (or between T and T+dT).

1 N,
(2) The mean recurrence time: (T) = ]lim —2 Tj,
N — o0 N@ 1




Il — Statistical analysis of recurrences

Analysis of the sequence of recurrence times: {]} i=1 , 7 e e e, OO}

(1) The recurrence time distribution (RTD) denoted as P(T) is the probability of finding a
recurrence time Ti=T (or between T and T+dT).

1 N,
(2) The mean recurrence time: (T) = ]lim —2 Tj,
N — o0 N@ 1

Total observation time: t — Nt()ta-lAt = Ne@ents<T>

The mean is determined (T) — A¢ Ntota,l At At

by the recurrence interval: N epents = M(I) - fI p(:z:)da:



Il — Statistical analysis of recurrences

Two basic statistical properties of the recurrence times:

1. The mean recurrence time depends only on the PDF (x) and
not on the temporal properties of the time series (Kac's Lemma).

2. The RTD depends only on the temporal properties of the time
series and not on the PDF (x).




Il — Statistical analysis of recurrences

Two basic statistical properties of the recurrence times:

1. The mean recurrence time depends only on the PDF (x) and
not on the temporal properties of the time series (Kac's Lemma).

2. The RTD depends only on the temporal properties of the time
series and not on the PDF (x).

For {X} being a sequence of uncorrelated random numbers (i.i.d.) (fixed probability of
recurrence ) a binomial/Poisson distribution is obtained:

P(T)=pu(l— )t =PT)=pe " for p — 0

Usually exponential decay of correlations => the RTD P(T) decays exponentially.




Il — Examples

There are many different examples of application of such analysis:
« Climate data (e.g., temperature, water height).

« Turbulent data (e.g., solar flares): RT is called laminar phase
between irregular bursts.

 Time series from neurons: RT is called interspike intervals.
e Stock market data.

 Earthquakes: RT is called interocurrence time.

For references see;:
E.G.A. and H. Kantz, Phys. Rev. E 71, 056106.




Il — Example: earthquakes

The events are distributed according —bIn(10M
to the Gutenberg-Ricther law: p(M) X € )

By the previous results, we obtain as (TY(M) =T et n(10)Me
mean recurrence time between two 0
earthquakes:

Th < bIn(10) /(1 — e—bln(w)(s)
IX,0) =X~ 8X.+ 4.



Il — Example: earthquakes

The events are distributed according —bIn(10M
to the Gutenberg-Ricther law: ,O(M) S )

By the previous results, we obtain as <T> (M) — T ebln(lO)Mc
mean recurrence time between two 0
earthquakes:

Th < bIn(10) /(1 — e—bln(low)
I(X,0)=[X.-6X.+6]

Comparing with previous results:

1. An equivalent “remarkable” result was obtained previously through different
mean-field approximations in [A. Sornette and D. Sornette, EPL (1989)].

2. More confusing is the analysis of SOC models and earthquakes present in
[Yang et al., PRL (2004)], where the PDF is incorrectly associated to the PDF of
the sequence of earthquakes.
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Ill — Long-range correlated time series

Auto-correlation and the recurrence
time distribution.

Reference: E.G. Altmann and H. Kantz, "Recurrence time analysis, long-term
correlation, and extreme events", Phys. Rev. E 71, 056106 (2005).



lll- Long-range correlated time series

We are interested in time series presenting long-range correlation:

N—s

1 .
N — SE XiXps = S e O<yc<1

C\(s) ={xx; ) =

What corresponds to a power-sepctrum: S(w) ~ a)_'B , :l—yc.

Observed, e.g., in financial data, meteorological and climatological records,
turbulence data, physicological records, and DNA sequences.
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1
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Observed, e.g., in financial data, meteorological and climatological records,
turbulence data, physicological records, and DNA sequences.

Gaussian distributed random variables with long-range correlation are generated through a Fourier
transform technique [Prakash et al. PRA 1992].

Notice that defining the autocorrelation function of a Gaussian distributed stochastic process uniquely
defines it: | will call it linear process.




lll- Long-range correlated time series

We are interested in time series presenting long-range correlation:

N—s

1
2 XX~ S e, 0<vy.<lI

C(s)={(xx )= —
(9) = ) = 2

What corresponds to a power-sepctrum: S(w) ~ a)_'B, :1—yc.

Observed, e.g., in financial data, meteorological and climatological records,
turbulence data, physicological records, and DNA sequences.

Gaussian distributed random variables with long-range correlation are generated through a Fourier
transform technique [Prakash et al. PRA 1992].

Notice that defining the autocorrelation function of a Gaussian distributed stochastic process uniquely
defines it: | will call it linear process.

Exponential decay of correlations => exponential decay of the RTD.

Should we expect power-law decay of the recurrence time distribution (RTD)?




The eflect of long-term correlations on the return
periods of rare events

Armin Bunde?, Jan F. Eichner?, Shlomo Havlin®,
Jan W. Kantelhardt®:*

YInstitut fiir Theoretische Physik III, Justus-Liebig-Universitiit, Giessen, Heinrich-Buff-Ring 16,
Giessen 35392, Germany
® Department of Physics, Minerva Center, Bar-Ilan University, Ramat-Gan, Israel

Physica A 330 (2003) 1-7

Abstract

The basic assumption of common extreme value statistics is that different events in a time
record are uncorrelated. In this case, the return intervals r, of events above a given threshold size
q are uncorrelated and follow the Poisson distribution. In recent years there is growing evidence
that several hydro-meteorological and physiological records of interest (e.g. river flows, tem-
peratures, heartbeat intervals) exhibit long-term correlations where the autocorrelation function
decays as Cx(s)~s~", with y between 0 and 1. Here we study how the presence of long-term
correlations changes the statistics of the return intervals r,. We find that (a) the mean return
intervals R, = (r,) are independent of y, (b) the distribution of the r, follows a stretched ex-
ponential, InP,(r) ~ —(r/R;)’, and (c) the return intervals are long-term correlated with an
exponent y close to 7.
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Similar results were observed in different data:

 Maximum daily temperature (Bunde et al. 2003).
* Wind speed velocity (Santhanam and Kantz 2004).
« Water height of the Nile (Bunde et al. 2005).
« Systems with intermediate correlations (Penetta 2006).
e Data with different non-Gaussian PDFs (Eichner et al. 2007).



Ill- The stretched exponential distribution

The stretched exponential distribution proposed by Bunde et al. :

_ Y
P. (1) = ae (67)



Ill- The stretched exponential distribution

The stretched exponential distribution proposed by Bunde et al. :
_ —(bD)”
P. (1) = ae

Assuming that this distribution is valid for all times 7' |0, o[

fooP(T)dT=1,
0

(1) = foo I'P(NdT=
0

p(l)

Counting the time as units of the average recurrence time = 77/ _7> = (1) T

py( 7) = a,},e_”’}f"'}?,
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Ill- The stretched exponential distribution
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Ill- The stretched exponential distribution




Ill- The stretched exponential distribution

(b)
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Ill- The stretched exponential distribution

In summary good agreement for both kinds of recurrence intervals:
[e,w(Q) — [qrx[ [(XC, 5) — [XC— 5,XC+ 5]

The single free parameter is given by:

Y., when X . — oo(extreme),

7 1, when X.=0.



p(X)

lll — Dependence on the observable

p'(y)




lll — Dependence on the observable

Long-range correlation concentrates on the extreme events.

Different observables have different recurrence and correlation
properties: they are not measures of the “system”.

Analogously:

Climate:
daily maximum temperature (long range).
X

rainfall (short range).

Stock-market:
fluctuation of prices (short range).
X

volatility (long-range).




IV — Effect of (human) reactions

What we do and
what we should do

E.G. Altmann, S. Hallerberg, and H. Kantz, "Reactions to extreme events:
moving threshold model", Physica A 364 p. 435 (2000).



IV — Effect of (human) reactions

- Most Vulnerable
To Flooding,
Wind Storms

NY Times Jan. 2, 2005




IV — Effect of (human) reactions

10 Worst Floods
China 1931 3,700,000
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Usual human reactions to the occurrence/absence of extreme events:

- after an extreme event protection barriers are increased.
- if no extreme event happens for a long time protections are reduced.
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Usual human reactions to the occurrence/absence of extreme events:

- after an extreme event protection barriers are increased.
- if no extreme event happens for a long time protections are reduced.

Consider the example of floods in river:
observable: height of the water.
extreme event: if the water overpass the levees (protection barriers).

10m
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Questions:

Q1: Which is the influence of the reactions on our perception and on the occurrence
of extreme events?

Q2: Which is the best method in order to reduce the number of extreme events?




IV — Effect of (human) reactions

Questions:

Q1: Which is the influence of the reactions on our perception and on the occurrence
of extreme events?

Q2: Which is the best method in order to reduce the number of extreme events?

Class of systems we are interested in:

« Observable that compose a time series &
(e.g., the height of the river).

* Time dependent size of the preventive barrier g
(e.g., the height of the levees).

Condition for extreme event: if at a given time n* we have é>g we say that an
extreme event of size y=¢&-g occurred. (e.g., flood).




IV — Very simplified model that
mimics the effects described before

max{o«c,, ﬁqn} if &, > q, - extreme event => barrier increase.
qpny1 = g |
et ﬂqn if Cn < d,,» normal event => barrier decrease.

Control parameters are a and S

O< <1 (usually Bclose to 1).
O<a (usually 1<a, but close to 1).

For simplicity ¢ is white noise.



IV - Answer to question 1:

Recurrence time (time between two extreme events)

Probability of having an extreme event at time ¢

> 1 2 1 V2
r(t) = / p(§)dE = / _ me‘%%: aerfc(gqt)-
vt v

The recurrence time statistics (first extreme event at time T) is given by:

P(T) = Cr(T)e™ Jo r()ds,

2 T 206~ 37 1133 1 .
P(T: ¢ ):gerfc(§a5 7Y expl— L — Y20€_ gFg(—._—;E.E-—E(a-f 12327 Y]

2 2In(@)/w




IV - Answer to Q1:

Recurrence time (time between two extreme events)
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IV - Answer to Q2:
Efficiency of the method

 Aim: Reduce the number of extreme events [p(y>0)].

e Costs: mean value of the barrier <g>.

* Which are the optimal values of (a,()?
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IV - Answer to Q-2:
Efficiency of the method

fixed barrier
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IV - Answer to Q-2:
Non-stationary time series
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V — Conclusions

1. Statistical characterization of the recurrences of extreme events is
a general procedure.

-<T>=1/u(x) depends only on the PDF-(x) and on the rec. interval /.

-The recurrence time distribution (RTD) is independent of the PDF-(x).

- Uncorrelated and short-time correlated data show exponential decay of
the RTD.



1.

V — Conclusions

Statistical characterization of the recurrences of extreme events is
a general procedure.

. We have explored different properties of the statistics of

recurrence times for long-range correlated time series.
- No unique correspondence between auto-correlation and RTD.
- A closed expression of the stretched exponential distribution shows good
agreement with the numerical results for linear long-range correlated time

series.

- The single free parameter g varies as

v., when X.— oo(extreme),

[ 1, when X_.=0.

- RTD and auto-correlation function depend (independently) on the observable.



V — Conclusions

1. Statistical characterization of the recurrences of extreme events is
a general procedure.

2. We have explored different properties of the statistics of
recurrence times for linear long-range correlated time series.

3. The feed-back reaction to extreme events was investigated in a
simple model of moving threshold were it was shown that:

- periodicity in the occurrence of extreme events.

- it is less efficient than maintaining the barrier constant: avoid the reduction of
barriers in the quiet time (sustainability).
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