
  

Recurrences of Extreme Events

Eduardo G. Altmann

Max Planck Institute 
for the Physics of Complex Systems

Dresden -Germany

http://www.pks.mpg.de/~edugalt/

Eötvös University Budapest November 14 2007.



  

Contents

I.  Introduction - An unified perspective of extreme events

  

II. Recurrences – in Physics and in data analysis

III. Long-range correlated time series

IV. Effect of (human) reactions

V.  Conclusions

#Slide 43 *

#Slide 56*

#Slide 29*

#Slide 14*

#Slide 3*



  

I - Introduction

What are extreme events?



  

I – Example 1: Floods
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I – Example 2: Wind Gusts 

Photos from http://members.aol.com/fswemedien/ZZUnfalldatei.htm



  

I – Example 2: Wind Gusts 

Kantz et al., Springer-Verlag (2006).
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Different prediction strategies
ξ: observation.   
Ξ: extreme event.

●Strategy I: 
maximize the a posteriori PDF ρ(ξ | Ξ)
(search Ξ look how the ξ were before)

●Strategy II:
maximize the likelihood PDF ρ(Ξ | ξ)
(for a given x look whether a Ξ follows)

Bayes theorem: ρ(ξ, Ξ) = ρ(ξ | Ξ) ρ(Ξ) = ρ(Ξ | ξ) ρ(ξ)

For wind speed and ARMA process Strategy II is superior.
Phys. Rev. E 75, 016706 (2007).



  

I – Example 3: Earthquakes

http://www.pnsn.org



  

I – Example 3: Earthquakes

htttp://www.wikipedia.org



  

Bak et al PRL (2002).



  

I - Introduction
● Reasons for an unified treatment of extreme events:

- statistical characterization of the phenomena.
- prediction procedures.
- risk estimations and precautions.

See Book: “Extreme events in nature and society”, Albeverio, Jentsch, 
Kantz (Eds.) Springer, (2006).
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I - Introduction
● Reasons for an unified treatment of extreme events:

- statistical characterization of the phenomena.
- prediction procedures.
- risk estimations and precautions.

See Book: “Extreme events in nature and society”, Albeverio, Jentsch, 
Kantz (Eds.) Springer, (2006).

● Definition of extreme events? 
Some necessary conditions:

Large (in some relevant observable) 
Rare (otherwise adaptation)
Unexpected       (otherwise precaution)
Harmful (otherwise irrelevant)

● Classification of extreme events:
extrinsic   X intrinsic origin (own dynamics).
recurrent X non-recurrent events.



  

II – Recurrences in Physics

A fundamental concept and a 
statistical tool
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II – Recurrences in Physics
● Poincaré recurrence theorem (1892): all trajectories of closed Hamiltonian 

systems return an infinite number of times to their initial conditions.

● Zermelo Paradox:  the theorem above applied to the systems studied in 
statistical mechanics implies a violation of  2nd law of Thermodynamics.  

● Boltzmann's solution: the mean recurrence time of a typical 
thermodynamical system is huge (statistical interpretation of the 2nd law).

Poincaré recurrence (phase space)
X 

 recurrence in time series (1-dimension)

 Projection of the high-dimensional 
phase space  to a specific observable 

(e.g., the entropy). 



  

II  – Recurrences in time series

Where extreme and non-extreme recurrence intervals are:

And lead to sequences of recurrence times:



  

II – Statistical analysis of recurrences 

Analysis of the sequence of recurrence times:



  

II – Statistical analysis of recurrences 

Analysis of the sequence of recurrence times:

(1) The recurrence time distribution (RTD) denoted as P(T) is the probability of finding a 
recurrence time Ti=T (or between T and T+dT).

(2) The mean recurrence time:



  

II – Statistical analysis of recurrences 

Analysis of the sequence of recurrence times:

Total observation time:

 The mean is determined
 by the recurrence interval:

(1) The recurrence time distribution (RTD) denoted as P(T) is the probability of finding a 
recurrence time Ti=T (or between T and T+dT).

(2) The mean recurrence time:



  

II – Statistical analysis of recurrences 

Two basic statistical properties of the recurrence times:

1. The mean recurrence time depends only on the PDF (x) and 
not on the temporal properties of the  time series (Kac's Lemma).

2. The RTD depends only on the temporal properties of the time 
series and not on the PDF (x).



  

II – Statistical analysis of recurrences 

For {x} being a sequence of uncorrelated random numbers (i.i.d.) (fixed probability of 
recurrence µ) a binomial/Poisson distribution is obtained:

Usually exponential decay of correlations  =>  the RTD  P(T) decays exponentially. 

Two basic statistical properties of the recurrence times:

1. The mean recurrence time depends only on the PDF (x) and 
not on the temporal properties of the  time series (Kac's Lemma).

2. The RTD depends only on the temporal properties of the time 
series and not on the PDF (x).



  

II – Examples
There are many different examples of application of such analysis:
● Climate data (e.g., temperature, water height).

● Turbulent data (e.g., solar flares): RT is called laminar phase 
between irregular bursts. 

● Time series from neurons: RT is called interspike intervals.

● Stock market data.

● Earthquakes: RT is called interocurrence time.

For references see: 

E.G.A. and H. Kantz, Phys. Rev. E 71, 056106.



  

II – Example: earthquakes

         

The events are distributed according 
to the Gutenberg-Ricther law:

By the previous results, we obtain as 
mean recurrence time between two 
earthquakes:



  

II – Example: earthquakes
The events are distributed according 
to the Gutenberg-Ricther law:

By the previous results, we obtain as 
mean recurrence time between two 
earthquakes:

Comparing with previous results:

1. An equivalent “remarkable” result was obtained previously through different 
mean-field approximations in [A. Sornette and D. Sornette, EPL (1989)].

2. More confusing is the analysis of SOC models and earthquakes present in 
[Yang et al., PRL (2004)], where the PDF is incorrectly associated to the PDF of 

the sequence of earthquakes.



  

Power-law + exponential



  

III – Long-range correlated time series

Auto-correlation and the recurrence 
time distribution.

Reference: E.G. Altmann and H. Kantz, "Recurrence time analysis, long-term 
correlation, and extreme events", Phys. Rev. E 71, 056106 (2005).



  

III- Long-range correlated time series
We are interested in time series presenting long-range correlation:

What corresponds to a power-sepctrum:  S(ω) ~ ω−β,  β=1−γ
c
.

Observed, e.g.,  in financial data, meteorological and climatological records, 
turbulence data, physicological records, and DNA sequences.
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c
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turbulence data, physicological records, and DNA sequences.

Gaussian distributed random variables with long-range correlation are generated through a Fourier 
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Notice that defining the autocorrelation function of a Gaussian distributed stochastic process uniquely 
defines it: I will call it linear process.

 
Exponential decay of correlations => exponential decay of the RTD.

Should we expect power-law decay of the recurrence time distribution (RTD)?



  



  

Similar results were observed  in different data:

● Maximum daily temperature      (Bunde et al. 2003).
● Wind speed velocity    (Santhanam and Kantz 2004).
● Water height of the Nile         (Bunde et al. 2005).
● Systems with intermediate correlations          (Penetta 2006).
● Data with different non-Gaussian PDFs (Eichner et al. 2007).

clustering of data



  

III- The stretched exponential distribution

The stretched exponential distribution proposed by Bunde et al. :



  

III- The stretched exponential distribution

The stretched exponential distribution proposed by Bunde et al. :

Assuming that this distribution is valid for all times                      

Counting the time as units of the average recurrence time 



  

III- The stretched exponential distribution
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III- The stretched exponential distribution

In summary good agreement for both kinds of recurrence intervals:

The single free parameter is given by:



  

III – Dependence on the observable



  

III – Dependence on the observable

● Long-range correlation concentrates on the extreme events.

● Different observables have different recurrence and correlation 
properties: they are not measures of the “system”.

● Analogously:

Climate: 
daily maximum temperature (long range).

X  
rainfall (short range).

Stock-market: 
fluctuation of prices (short range).

X 
volatility (long-range).



  

IV – Effect of (human) reactions 

What we do and 
what we should do

E.G. Altmann, S. Hallerberg, and H. Kantz, "Reactions to extreme events: 
moving threshold model", Physica A 364 p. 435 (2006).



  

IV – Effect of (human) reactions 

NY Times Jan. 2, 2005 
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IV – Effect of (human) reactions 
Usual human reactions to the occurrence/absence of extreme events:

- after an extreme event protection barriers are increased.
- if no extreme event happens for a long time protections are reduced.
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IV – Effect of (human) reactions

Questions:

Q1: Which is the influence of the reactions on our  perception and on the occurrence 
of extreme events? 

 Q2: Which is the best method in order to reduce the number of extreme events?



  

IV – Effect of (human) reactions

Questions:

Q1: Which is the influence of the reactions on our  perception and on the occurrence 
of extreme events? 

 Q2: Which is the best method in order to reduce the number of extreme events?

Class of systems we are interested in:

● Observable that compose a time series ξ
(e.g., the height of the river).

● Time dependent size of the preventive barrier  q
(e.g., the height of the levees).

Condition for extreme event: if at a given time n* we have ξ>q we say that an 
extreme event of size y=ξ-q occurred. (e.g., flood).



  

IV – Very simplified model that 
mimics the effects described before

Control parameters are α and β :

0< β <1 (usually β close to 1).        
0< α     (usually 1<α, but close to 1).

For simplicity ξ is white noise.

extreme event => barrier increase.

normal event => barrier decrease.



  

IV - Answer to question 1:
Recurrence time (time between two extreme events)

Probability of having an extreme event at time t

  

The recurrence time statistics (first extreme event at time T) is given by:



  

The maximum of 
P(T) scales as:

T*= ln(a)/ln(β)

Human reactions 
introduce a 

periodicity on the 
occurrence of 

extreme events.

IV - Answer to Q1:
Recurrence time (time between two extreme events)



  

IV - Answer to Q2: 
Efficiency of the method

● Aim: Reduce the number of extreme events [ρ(y>0)].
● Costs: mean value of the barrier <q>.

● Which are the optimal values of (α,β)?



  

IV - Answer to Q-2: 
Efficiency of the method



  

IV - Answer to Q-2: 
Non-stationary time series



  

V - Conclusions



  

V – Conclusions

1.  Statistical characterization of the recurrences of extreme events is 
a general procedure.

-<T>=1/µ(x) depends only on the PDF-(x) and on the rec. interval I.

-The recurrence time distribution (RTD) is independent of the PDF-(x).

- Uncorrelated and short-time correlated data show exponential decay of 
the RTD.



  

V – Conclusions

1.  Statistical characterization of the recurrences of extreme events is 
a general procedure.

2. We have explored different properties of the statistics of 
recurrence times for long-range correlated time series.

- No unique correspondence between auto-correlation and RTD.

- A closed expression of the stretched exponential distribution shows good 
agreement with the numerical results for linear long-range correlated time 
series.

- The single free parameter g  varies as

- RTD and auto-correlation function depend (independently) on the observable.



  

V – Conclusions

1. Statistical characterization of the recurrences of extreme events is 
a general procedure.

2. We have explored different properties of the statistics of 
recurrence times for linear long-range correlated time series.

3. The feed-back reaction to extreme events was investigated in a 
simple model of moving threshold were it was shown that:

- periodicity in the  occurrence of extreme events. 

- it is less efficient than maintaining the barrier constant: avoid the reduction of 
barriers in the quiet time (sustainability).
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