Ferromagnets, antiferromagnets and magnets in-between

László Mihály

Stony Brook University, Brookhaven National Laboratory Budapesti University of Technology and Economics

Budapest University of Technology and Economics

Heisenberg model $\mathcal{H}=J\sum S_i S_j$

J < 0 ferromagnet: Macroscopic magnetization $S^{\text{tot}} = \sum S = N S$ $[S_x^{\text{tot}}, S_y^{\text{tot}}] = i \, \mathfrak{h} S_z^{\text{tot}} \longrightarrow [S_x, S_y] = i \, (\mathfrak{h}/N) \, S_z$ Quantum fluctuations are suppressed $[\mathcal{H}, S_z^{\text{tot}}] = 0 ; [\mathcal{H}, S^{\text{tot } 2}] = 0$

Macroscopic \leftrightarrow no quantum effects

J > 0 antiferromagnets: Two sublattices $S^{\text{tot}}_{A} = \sum_{A} S = (N/2) S \quad S^{\text{tot}}_{B} = \sum_{B} S = (N/2) S$ $[\mathcal{H}, S^{\text{tot}}] \neq 0$

Macroscopic ↔ quantum state

Cannot be the ground state!

Heisenberg "antiferromagnet": two spins

Two electrons

$$E = -\frac{1}{4} J$$

This is not rotation invariant, although $S^{tot}=0$ We can do better! Coherent superposition:

$$1/\sqrt{2}$$
 (4 - 4) $E = -3/4 J$

How can we do this for more than two spins? Not trivial... Valence bond solid (Sachdev,Read 1990) Resonating valence bond (Anderson, Fazekas, 1974, Anderson, 1987)

Stability of Néel state

Magnon excitation spectrum:

$$\omega(q)=JS \sqrt{(1-\cos 2(qa))} \sim q$$
 for small q

Quantum fluctuations suppress sublattice magnetization (Anderson, 1952)

$$S_{\rm A}^{\rm tot}/N = 1/2(S - \delta S)$$

$$\delta S \approx \frac{1}{2S} \frac{1}{N} \sum_{\mathbf{R}} \left\langle S_{\mathbf{R}}^{-} S_{\mathbf{R}}^{+} \right\rangle = \frac{1}{2S} \int \frac{d^{3} \mathbf{Q}}{v_{BZ}} \frac{g^{-+}(\mathbf{Q})}{\hbar \omega(\mathbf{Q})} \sim \int g(q) / \omega(q) \, \mathrm{d}^{D} q$$

Quantum correction depends on dimensionality D, will diverge in one dimension if there is no gap in magnon spectrum

ESR measures the q=0 magnon

Stabilize the Néel state: anisotropy

$$\mathcal{H} = \sum J_{x}(r) S_{m}^{x} S_{m+r}^{x} + J_{y}(r) S_{m}^{y} S_{m+r}^{y} + J_{z}(r) S_{m}^{z} S_{m+r}^{z}$$

Single ion anisotropy: $\begin{aligned} \mathcal{H}_{A} &= \sum D_{x} (S_{m}^{\ x})^{2} + D_{y} (S_{m}^{\ y})^{2} + D_{z} (S_{m}^{\ z})^{2} \\ \text{Exchange anisotropy:} \\ \mathcal{H}_{EA} &= \sum J (S_{j}^{\ x}S_{j+1}^{\ x} + S_{j}^{\ x}S_{j-1}^{\ x} + S_{j}^{\ y}S_{j+1}^{\ y} + S_{j}^{\ y}S_{j-1}^{\ y} + S_{j}^{\ z}S_{j+1}^{\ z} + S_{j}^{\ z}S_{j-1}^{\ z}) \\ \text{Dzyaloshinski-Moriya } D(S_{1}xS_{2}) \text{ term:} \\ \mathcal{H}_{D} &= \sum D(S_{j}^{\ x}S_{j+1}^{\ z} - S_{j}^{\ z}S_{j+1}^{\ x} + S_{j}^{\ x}S_{j-1}^{\ z} - S_{j}^{\ z}S_{j-1}^{\ x}) \end{aligned}$

All are due to spin orbit coupling Leads to gap in magnon spectrum

Kill the Néel state: Frustration

Pyrochlore, spinel Ho2Ti2O7 ZnZr2O7

CsCoCl₃, NaNiO₂

Kagomé KFe3(OH)6(SO4)2

Kill the Néel state: Interaction beyond first neighbor

Often leads to helical order, incommensurate wavelength

Search for the RVB ground state

Excitations in Neel state: spin 1 magnons

$$\psi_l = S_l^+ |0\rangle \qquad \qquad \psi_{\mathbf{k}} = \frac{1}{\sqrt{2S}} \frac{1}{N} \sum_l e^{i\mathbf{k}\mathbf{R}_l} Sl^+ |0\rangle$$

Excitations in RVB state: spin $\frac{1}{2}$ spinons

Soliton (domain wall) in one dimension

Examples: Cs_2CuCl_4 Triangular plane J, J' $LiCu_2O_2$ Triangular chain Also: NaNiO_2 Triangular, ferromagnet/antiferromagnet Ni_5(TeO_3)_4Cl_2 Complex unit cell

Instrument: Magnet & Spectrometer

Incident light always along \boldsymbol{b}

External field can point parallel or perpendicular to plane: along a, or b or c

Polarization: along a or c

Measure spectrum at many fixed fields.

Map the ESR absorption over the whole range of fields/frequencies

Brookhaven Lab, National Synchrotron Light Source, U12IR

14/16 Tesla 8 - 200 cm-1 (Up to visible) 1.8K-300K Transmission

Samples and sample holders

 $LaMnO_3$

 $LiCu_2O_2$

 $Ni_5(TeO_3)_4Cl_2$

 $Cu_2Te_2O_5Cl_2$

LaMnO₃ : "simple" antiferromagnet

$LaMnO_3$: ESR

$LaMnO_3$: ESR

H perpendicular to easy axis -- Kittel result does not work

L. Mihály, D. Talbayev, L.F. Kiss, J. Zhou, T. Fehér and A. Jánossy Phys. Rev. B 69 024414, (2004) D.Talbayev L. Mihaly J. Zhou, Phys.Rev. Letters, 93 017202 (2004)

Ni₅(TeO₃)₄Cl₂: "optical" magnons

Building block has 5 Ni sites: More magnons at q=0 - similar to optical phonons

$Ni_5(TeO_3)_4Cl_2$

At least 8 (possibly 10) modes. Intensity depends on polarization. Field induced transition for field applied perpendicular to sample plane.

L. Mihaly, T. Feher, B. Nafradi, H. Berger, L. Forro, to be published

LiCu₂O₂: Helical order

One dimensional chains, "triangular ladder", spin order determined from neutron scattering

Interactions in $LiCu_2O_2$

Frustrated exchange coupling

$$\mathcal{H} = \sum_{i,j} J_1 S_{i,j} S_{i+1,j} + J_2 S_{i,j} S_{i+2,j} + J_4 S_{i,j} S_{i+4,j} + J_\perp S_{i,j} S_{i,j+1} - g\mu_B H S_{i,j}^y + \mathcal{H}'_A S_{i,j} S_{i+1,j} + J_2 S_{i,j} S_{i+1,j} + J_2 S_{i,j} S_{i+2,j} + J_4 S_{i,j} S_{i+4,j} + J_\perp S_{i,j} S_{i,j+1} - g\mu_B H S_{i,j}^y + \mathcal{H}'_A S_{i,j} S_{i+4,j} + J_\perp S_{i,j} S_{i,j+1} - g\mu_B H S_{i,j}^y + \mathcal{H}'_A S_{i,j} S_{i+4,j} + J_\perp S_{i,j} S_{i,j+1} - g\mu_B H S_{i,j}^y + \mathcal{H}'_A S_{i,j} S_{i+4,j} + J_\perp S_{i,j} S_{i,j+1} - g\mu_B H S_{i,j}^y + \mathcal{H}'_A S_{i,j} S_{i+4,j} + J_\perp S_{i,j} S_{i,j+1} - g\mu_B H S_{i,j}^y + \mathcal{H}'_A S_{i,j} S_{i+4,j} + J_\perp S_{i,j} S_{i,j+1} - g\mu_B H S_{i,j}^y + \mathcal{H}'_A S_{i,j} S_{i+4,j} + J_\perp S_{i,j} S_{i,j+1} - g\mu_B H S_{i,j}^y + \mathcal{H}'_A S_{i,j} S_{i+4,j} + J_\perp S_{i,j} S_{i+4,j} + J_\perp S_{i,j} S_{i,j+1} - g\mu_B H S_{i,j}^y + \mathcal{H}'_A S_{i,j} S_{i+4,j} + J_\perp S_{i,j} +$$

 J_1 =6.4meV J_2 =-11.9meV (ferromagnetic.) J_4 = 7.4meV J_{perp} =1.8meV From neutron scattering

T. Masuda et al. cond-mat/0412625, Phys. Rev. B **72**, 014405 (2005)

Frustration --> helical spin order.

J-s are not enough! What selects the plane of the helix? How large is the gap at q=0 in the magnon spectrum?

 $\mathcal{H}' = D_{ex} S^y_{i,j} S^y_{i+1,j}$

ESR provides the answer

ESR on LiCu₂O₂

Mihaly 2005 Feb. 25 v963..728 (90deg2p5kfield_2d)

Two representations - same data

Temperature dependence

Temperature dependence at fixed fields

Temperature dependence at fixed fields

Mihaly, 2005 March 6 x983..786 (0deg10Ttemp)

Mihaly, 2005 March 6 x728..638 (0deg0Ttemp)

Helical order with field induced canting

$$J' = \frac{J(2\mathbf{Q}) + J(\mathbf{0})}{4} - \frac{J(\mathbf{Q})}{2}$$

Zero field gap:

$$\Delta = 2S\sqrt{J'\cos(\phi/2)D_{ex}}$$

Two branches.

ESR susceptibility is strongly field dependent, weak signal for upper branch.

Weak signal observed at 420GHz AFTER theory predicted it

NaNiO₂: triangular layered

- ٠
- Ni³⁺ ions in t⁶_{2g}e¹_g configuration High temperature structure: rhombohedral, with triangular Ni lattice ٠
- Cooperative JT distortion at 475K; becomes monoclinic •
- Magnetic order at 20K ٠
- powder sample •

NaNiO₂ (DeBrion)

NaNiO₂ spin Hamiltonian

$$\begin{aligned} \mathcal{H}_{0} &= J_{F}\sum_{ab}\mathbf{S}_{i}\mathbf{S}_{j} + J_{AF}\sum_{c}\mathbf{S}_{i}\mathbf{S}_{j} + g\mu_{B}\mathbf{S}\mathbf{H} \\ &+ J_{F}^{z}\sum_{ab}S_{i}^{z}S_{j}^{z} + J_{AF}^{z}\sum_{c}S_{i}^{z}S_{j}^{z} \\ &+ J_{F}^{x}\sum_{ab}S_{i}^{x}S_{j}^{x} + J_{AF}^{x}\sum_{ab}S_{i}^{x}S_{j}^{x} \end{aligned}$$

$$\mathcal{H}_{MF} = \frac{N}{2} (2S)^2 \{ 6[J_F(\mathbf{m}_1^2 + \mathbf{m}_2^2) + J_{AF}(2\mathbf{m}_1\mathbf{m}_2) + J_F(m_{1z}^2 + m_{2z}^2) + J_{AF}(2m_{1z}m_{2z}) + J_F(m_{1x}^2 + m_{2x}^2) + J_{AF}(2m_{1x}m_{2x})] + J_F(m_{1x}^2 + m_{2x}^2) + J_{AF}(2m_{1x}m_{2x})] + g\mu_B \frac{1}{2S} (\mathbf{m}_1 + \mathbf{m}_2) \mathbf{H} \}$$

$$\mathcal{H}_{MF} = N\{\frac{A}{2}\mathbf{m}^2 + \frac{a}{2}m_z^2 + \frac{b}{2}l_z^2 + \frac{c}{2}m_x^2 + \frac{d}{2}l_x^2 - \mathbf{mh}\}$$

NaNiO₂ bi-axial anisotropy

Easy axis within easy plane

$NaNiO_2$ spin orientation

In agreement with neutrons

S. De Brion et al, submitted to Phys. Rev. B

Köszönet

Jánossy András (BUTE)

Diyar Talbayev (Los Alamos)

Holczer Károly (UCLA)

Mihály György (BUTE)

Larry Carr (BNL), Forró László, (EPFL) Dora Balázs, Penc Karlo, Fazekas Patrik Fehér Titusz, Náfrádi Bálint, Nagy Kálmán Helmuth Berger (EPFL), Jianshi Zhu (U. Texas)

Szent-Györgyi alapítvány, NSF, DARPA