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Rare region effects

Randomly diluted classical Ising model

H = −J
∑
〈ij〉

κiκjSiSj + h
∑
i

κiSi, P (κ) = pδ(κ) + (1− p)δ(1− κ)
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Rare region of size l - locally in the ferromagnetic phase
density ∼ (1− p)ld

relaxation time τ ∼ exp(Ald−1)
autocorrelation: lnG(t) ∼ −(ln t)d/(d−1)

magnetization: m(h) ∼ exp(−B/h)
weak Griffiths singularities
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Random transverse-field Ising model (RTIM)

H = −
L−1∑
i=1

λiσ
x
i σx

i+1 −
L∑

i=1

hiσ
z
i ,

σx,z
i : Pauli matrices

λi: couplings, hi: transverse fields, iid random numbers.
control parameter

δ =
[lnh]av − [lnλ]av

var[lnλ] + var[lnh]
.

T = 0, δ < 0: ferromagnetic phase; δ > 0: paramagnetic phase.
δ = 0: random quantum critical point
time-scale is governed by the largest coupled region
τ ∼ 1/ε ∼ Lz, z = z(δ) dynamical exponent
autocorrelation: G(t) ∼ t−1/z

susceptibility: χ ∼ T−1+1/z

strong Griffiths singularities
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Partially asymmetric simple exclusion process (PASEP)

• N particles hop to neighboring empty sites of a 1d lattice of size L > N

• the hop rates could depend on

– the given particle (particle-wise (pw) disorder)

– or on the departure site (site-wise (sw) disorder)

• the hop rates for the i-the particle (site): forward pi, backward qi

control parameter:

δp =
[ln p]av − [ln q]av

var[ln p] + var[ln q]
,

the particles move to the right (to the left) for δp > 0 (δp < 0).
time-scale is governed by the largest barrier
Stationary velocity: v ∼ 1/τ ∼ L−zp

zp = zp(δp): dynamical exponent

strong Griffiths singularities
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Extreme value statistics (EVS)

• y1, y2, . . . , yL (independent) random numbers

• distributed with (identical) parent distribution π(y)

• question is the distribution of the largest (k-th largest) value: ymax.

For iid random numbers three basic universality classes, depending on limy→∞ π(y).

• π(y) decays faster than any power-law: Gumbel distribution.

• π(y) decays as a power-law: Fréchet distribution.

• π(y) has a power-law with an edge: Weibull distribution.

For non-iid random numbers no general results.
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Strong Griffiths singularities are governed by rare,

extreme regions.

The interacting many-particle systems have strong

correlations.

Can the EVS still be of relevance?
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Exact result: RTIM with extreme disorder

Bimodal distribution: hi = 1, λi =

{
λ with pr c

λ−1 with pr 1− c
extreme limit: c � 1; λ � 1 → δ ∼ (1− 2c) lnλ � 1 paramagnetic phase.

Properties of a rare region of n strong bonds:

density of the cluster: ρ(n) = cn

excitation energy: ε(n) ≈ λ−n → n = − ln ε
lnλ

, dn = − dε
ε lnλ

distribution of the low-energy excitations:

P (ε)dε = ρ(n)dn → P (ε) ≈ 1
lnλ

εω, ε → 0 ; ω = ln(1/c)
lnλ

− 1

Typical size of the largest cluster: n1 → L
∑

n≥n1
ρ(n) = 1 → n1 ≈ lnL

ln(1/c)

smallest gap: ε1 ≈ λ−n1 ∼ L−z

with the dynamical exponent: z = lnλ
ln(1/c)

, and ω = 1
z
− 1.
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Distribution of the smallest gaps

PL(ε1) = LzP̃1(ε1Lz) ∼ Lεω
1

• localized excitations: the largest cluster can be at ∼ L positions

• ε1 is the smallest gap out of ∼ L independent rare regions,

• having identical parent distribution.

P̃1(u), is the standard Fréchet distribution

P̃1(u) = 1
z
u1/z−1 exp(−u1/z)

for the k-th smallest gap:

P̃k(uk) = 1
z
u

k/z−1
k exp(−u

1/z
k ), uk = u0Lzεk
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Numerical test

uniform distribution:

πλ(λ) =

{
1 for 0 < λ < 1

0 otherwise
πh(h) =

{
1/h0 for 0 < h < h0

0 otherwise

dynamical exponent z → z ln(1− z−2) = − lnh0.
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Exact result: PASEP with extreme disorder

Particle-wise bimodal disorder:
black particles: a fraction of c, pi = 1, qi = λ
white particles: a fraction of 1− c, pi = 1, qi = λ−1

extreme limit: c � 1; λ � 1 → δ ∼ (1− 2c) lnλ � 1 drift to the right.
Properties of a rare region of a cluster of n black particles:

density of the cluster: ρ(n) = cn

speed of the cluster: v(n) ≈ λ−n

distribution of the speed of clusters:

P (v) ≈ 1
lnλ

vω, v → 0 ; ω = ln(1/c)
lnλ

− 1

Equivalence with the RTIM as

ε(n) ↔ v(n)

ε1 ↔ v1 ≡ vstationary
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Numerical test
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Strong disorder renormalization

F.I., C. Monthus, Physics Reports 412, 277-431, (2005)

1. PASEP Composite particle formation

q~ ~p

q p

q p2 2

11

Renormalization scheme for particle clusters. If q2 is the largest hopping rate,
in a time-scale, τ > 1/q2, the two-particle cluster moves coherently and the
composite particle is characterized by the effective hopping rates q̃ and p̃,
respectively.
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• largest hop rate defines the energy scale: Ω = q2 � p1, q1, p2

• time scale: τ = 1/Ω, consider only t > τ :

• q̃ = q1 × q2

q2+p1
≈ q1

• p̃ = p2 × p1

q2+p1
≈ p1p2

q2

• for Ω = p1 � p2, q1, p2 we have p̃ ≈ p2, q̃ ≈ q1q2

p1
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Strong disorder RG approach of the random XX-chain

• Hamiltonian:

HXX = −
∑2L

i=1 Ji

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
• largest coupling defines the energy scale: Ω = J2 � J1, J3

• two sites with J2 form an effective singlet - are decimated out

• effective coupling between remaining sites: J̃ ≈ J1J3

J2

• Correspondence with the PASEP: qi ↔ J2i−1 pi ↔ J2i
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2. RG equations for the distribution functions: P (p,Ω), R(q,Ω)

dR(q,Ω)

dΩ
= R(q,Ω)[P (Ω,Ω)−R(Ω,Ω)]

− P (Ω,Ω)

∫ Ω

q

dq′R(q′,Ω)R(
qΩ

q′
,Ω)

Ω

q′

dP (p,Ω)

dΩ
= P (p,Ω)[R(Ω,Ω)− P (Ω,Ω)]

− R(Ω,Ω)

∫ Ω

p

dp′P (p′,Ω)P (
pΩ

p′
,Ω)

Ω

q′
,
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3. Fixed-point solution at Ω = Ω∗ → 0

The asymmetric model, δ > 0

P0(p,Ω) ≈ 1
zΩ

(
Ω
p

)1−1/z
, Ω < Ωξ ∼ ξ−z

z: dynamical exponent is the solution of:

[(
q
p

)1/z
]
av

= 1

At an energy-scale, Ω0 � Ωξ, typically

p̃ ∼ Ω0, ln q̃ ∼ Ω−1/z
0
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Renormalized model

• non-interacting effective particles of finite mass ↔ localized excitations

• unidirectional move with random speeds - identical distribution

• the stationary velocity is given by the smallest speed

Low energy excitations - EVS - Fréchet distribution
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Numerical RG tests for random quantum systems

• Finite random quantum system of linear size L

• Numerical renormalization up to the last effective spin (spin singlet)

• Last effective gap, ε, is calculated

• Its distribution is plotted

• Gap exponent, ω, is measured from the tail of the distribution

PL(ε) = LzP̃1(εLz) ? →? ∼ Ldεω

• Dynamical exponent, z, is calculated from scaling collapse

• Localization of excitations is checked: ω + 1 = d
z

• Comparison is made with the Fréchet distribution
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Random quantum Potts chain

HP = −
∑L−1

i=1 λiδ(si, si+1)−
∑L

i=1
hi

q

∑q−1
k=1 Mk

i

q-state spin variables: |si〉 = |1〉 = |2〉 = . . . |q〉
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RTIM: ladder and 2d system
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Random Heisenberg models

HH =
∑

i,j Ji,jtitj ~Si · ~Sj

~Si : spin-1/2 variable, ti = 0 with probability, p, and ti = 1, otherwise.
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Random quantum systems

EVS probably works, if the RG has same type of (strong disorder) fixed point.

• Models with discrete symmetry (Ising, Potts, etc)

– similar decimation rules

– localized excitations

– EVS could work at any dimension

• Models with continuous symmetry (Heisenberg)

– for non-chain.like objects modified decimation rules

– large spin formation → non-localized excitations

– EVS generally does not work for d > 1
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Conclusions

• Strong Griffiths singularities are due to rare region effects

• In systems with discrete symmetry the rare regions are localized

• Strong disorder RG provides low energy excitations, which are

– non-interacting → independent

– identically distributed random variables

– the low-energy tail is algebraic

Low energy excitations - EVS - Fréchet distribution
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