Strong Griffiths singularities in random systems and their relation to extreme value statistics

Róbert Juhász
Yu-cheng Lin
Ferenc Iglói
$$
\text { ELTE, } 1 \text { March, } 2006
$$

AGENDA

- Introduction - rare region effects
- Griffiths singularities in random quantum systems
- Random transverse Ising model with extreme disorder
- Strong disorder RG method
- Scaling results
- Numerical tests
- Griffiths singularities in random stochastic systems
- Partially asymmetric simple exclusion process with extreme disorder
- Strong disorder RG and scaling results
- Numerical tests
- Conclusion

Rare region effects

Randomly diluted classical Ising model

$$
H=-J \sum_{\langle i j\rangle} \kappa_{i} \kappa_{j} S_{i} S_{j}+h \sum_{i} \kappa_{i} S_{i}, \quad P(\kappa)=p \delta(\kappa)+(1-p) \delta(1-\kappa)
$$

Rare region of size l - locally in the ferromagnetic phase density $\sim(1-p)^{l^{d}}$
relaxation time $\tau \sim \exp \left(A l^{d-1}\right)$
autocorrelation: $\ln G(t) \sim-(\ln t)^{d /(d-1)}$
magnetization: $m(h) \sim \exp (-B / h)$
weak Griffiths singularities

Random transverse-field Ising model (RTIM)

$$
H=-\sum_{i=1}^{L-1} \lambda_{i} \sigma_{i}^{x} \sigma_{i+1}^{x}-\sum_{i=1}^{L} h_{i} \sigma_{i}^{z}
$$

$\sigma_{i}^{x, z}$: Pauli matrices
λ_{i} : couplings, h_{i} : transverse fields, iid random numbers.
control parameter

$$
\delta=\frac{[\ln h]_{\mathrm{av}}-[\ln \lambda]_{\mathrm{av}}}{\operatorname{var}[\ln \lambda]+\operatorname{var}[\ln h]} .
$$

$T=0, \delta<0$: ferromagnetic phase; $\delta>0$: paramagnetic phase.
$\delta=0$: random quantum critical point
time-scale is governed by the largest coupled region
$\tau \sim 1 / \epsilon \sim L^{z}, z=z(\delta)$ dynamical exponent
autocorrelation: $G(t) \sim t^{-1 / z}$
susceptibility: $\chi \sim T^{-1+1 / z}$
strong Griffiths singularities

Partially asymmetric simple exclusion process (PASEP)

- N particles hop to neighboring empty sites of a $1 d$ lattice of size $L>N$
- the hop rates could depend on
- the given particle (particle-wise (pw) disorder)
- or on the departure site (site-wise (sw) disorder)
- the hop rates for the i-the particle (site): forward p_{i}, backward q_{i}
control parameter:

$$
\delta_{p}=\frac{[\ln p]_{\mathrm{av}}-[\ln q]_{\mathrm{av}}}{\operatorname{var}[\ln p]+\operatorname{var}[\ln q]},
$$

the particles move to the right (to the left) for $\delta_{p}>0\left(\delta_{p}<0\right)$.
time-scale is governed by the largest barrier
Stationary velocity: $v \sim 1 / \tau \sim L^{-z_{p}}$
$z_{p}=z_{p}\left(\delta_{p}\right)$: dynamical exponent
strong Griffiths singularities

Extreme value statistics (EVS)

- $y_{1}, y_{2}, \ldots, y_{L}$ (independent) random numbers
- distributed with (identical) parent distribution $\pi(y)$
- question is the distribution of the largest (k-th largest) value: $y_{\max }$.

For iid random numbers three basic universality classes, depending on $\lim _{y \rightarrow \infty} \pi(y)$.

- $\pi(y)$ decays faster than any power-law: Gumbel distribution.
- $\pi(y)$ decays as a power-law: Fréchet distribution.
- $\pi(y)$ has a power-law with an edge: Weibull distribution.

For non-iid random numbers no general results.

Strong Griffiths singularities are governed by rare, extreme regions.

The interacting many-particle systems have strong correlations.

Can the EVS still be of relevance?

Exact result: RTIM with extreme disorder

Bimodal distribution: $h_{i}=1, \quad \lambda_{i}=\left\{\begin{array}{cl}\lambda & \text { with pr } \\ \lambda^{-1} & \text { with pr } \\ \lambda^{2}-c\end{array}\right.$ extreme limit: $c \ll 1 ; \lambda \gg 1 \rightarrow \delta \sim(1-2 c) \ln \lambda \gg 1$ paramagnetic phase.

Properties of a rare region of n strong bonds:
density of the cluster: $\rho(n)=c^{n}$
excitation energy: $\epsilon(n) \approx \lambda^{-n} \quad \rightarrow \quad n=-\frac{\ln \epsilon}{\ln \lambda}, \quad \mathrm{d} n=-\frac{\mathrm{d} \epsilon}{\epsilon \ln \lambda}$ distribution of the low-energy excitations:
$P(\epsilon) \mathrm{d} \epsilon=\rho(n) \mathrm{d} n \quad \rightarrow \quad P(\epsilon) \approx \frac{1}{\ln \lambda} \epsilon^{\omega}, \quad \epsilon \rightarrow 0 ; \quad \omega=\frac{\ln (1 / c)}{\ln \lambda}-1$
Typical size of the largest cluster: $n_{1} \rightarrow L \sum_{n \geq n_{1}} \rho(n)=1 \quad \rightarrow \quad n_{1} \approx \frac{\ln L}{\ln (1 / c)}$
smallest gap: $\epsilon_{1} \approx \lambda^{-n_{1}} \sim L^{-z}$
with the dynamical exponent: $z=\frac{\ln \lambda}{\ln (1 / c)}$, and $\omega=\frac{1}{z}-1$.

Distribution of the smallest gaps

$$
P_{L}\left(\epsilon_{1}\right)=L^{z} \tilde{P}_{1}\left(\epsilon_{1} L^{z}\right) \sim L \epsilon_{1}^{\omega}
$$

- localized excitations: the largest cluster can be at $\sim L$ positions
- ϵ_{1} is the smallest gap out of $\sim L$ independent rare regions,
- having identical parent distribution.
$\tilde{P}_{1}(u)$, is the standard Fréchet distribution

$$
\widetilde{P}_{1}(u)=\frac{1}{z} u^{1 / z-1} \exp \left(-u^{1 / z}\right)
$$

for the k-th smallest gap:

$$
\tilde{P}_{k}\left(u_{k}\right)=\frac{1}{z} u_{k}^{k / z-1} \exp \left(-u_{k}^{1 / z}\right), \quad u_{k}=u_{0} L^{z} \epsilon_{k}
$$

Numerical test

uniform distribution:

dynamical exponent $z \quad \rightarrow \quad z \ln \left(1-z^{-2}\right)=-\ln h_{0}$.

RTIM first gap

RTIM second gap

Exact result: PASEP with extreme disorder

Particle-wise bimodal disorder:
black particles: a fraction of $c, p_{i}=1, q_{i}=\lambda$
white particles: a fraction of $1-c, p_{i}=1, q_{i}=\lambda^{-1}$
extreme limit: $c \ll 1 ; \lambda \gg 1 \rightarrow \delta \sim(1-2 c) \ln \lambda \gg 1$ drift to the right.
Properties of a rare region of a cluster of n black particles:
density of the cluster: $\rho(n)=c^{n}$
speed of the cluster: $v(n) \approx \lambda^{-n}$
distribution of the speed of clusters:

$$
P(v) \approx \frac{1}{\ln \lambda} v^{\omega}, \quad v \rightarrow 0 ; \quad \omega=\frac{\ln (1 / c)}{\ln \lambda}-1
$$

Equivalence with the RTIM as

$$
\begin{gathered}
\epsilon(n) \leftrightarrow v(n) \\
\epsilon_{1} \leftrightarrow v_{1} \equiv v_{\text {stationary }}
\end{gathered}
$$

Numerical test

pw uniform disorder: $h_{0}=3$.

sw binary disorder: $c=0.25, \lambda=2$

$$
z_{s w}=\frac{z_{p w}}{2}
$$

Strong disorder renormalization

F.I., C. Monthus, Physics Reports 412, 277-431, (2005)

1. PASEP Composite particle formation

Renormalization scheme for particle clusters. If q_{2} is the largest hopping rate, in a time-scale, $\tau>1 / q_{2}$, the two-particle cluster moves coherently and the composite particle is characterized by the effective hopping rates \tilde{q} and \tilde{p}, respectively.

- largest hop rate defines the energy scale: $\Omega=q_{2} \gg p_{1}, q_{1}, p_{2}$
- time scale: $\tau=1 / \Omega$, consider only $t>\tau$:
- $\tilde{q}=q_{1} \times \frac{q_{2}}{q_{2}+p_{1}} \approx q_{1}$
- $\tilde{p}=p_{2} \times \frac{p_{1}}{q_{2}+p_{1}} \approx \frac{p_{1} p_{2}}{q_{2}}$
- for $\Omega=p_{1} \gg p_{2}, q_{1}, p_{2}$ we have $\tilde{p} \approx p_{2}, \tilde{q} \approx \frac{q_{1} q_{2}}{p_{1}}$

Strong disorder RG approach of the random XX-chain

- Hamiltonian:

$$
H_{X X}=-\sum_{i=1}^{2 L} J_{i}\left(S_{i}^{x} S_{i+1}^{x}+S_{i}^{y} S_{i+1}^{y}\right)
$$

- largest coupling defines the energy scale: $\Omega=J_{2} \gg J_{1}, J_{3}$
- two sites with J_{2} form an effective singlet - are decimated out
- effective coupling between remaining sites: $\widetilde{J} \approx \frac{J_{1} J_{3}}{J_{2}}$
- Correspondence with the PASEP: $q_{i} \leftrightarrow J_{2 i-1} \quad p_{i} \leftrightarrow J_{2 i}$

2. $\mathbf{R G}$ equations for the distribution functions: $P(p, \Omega), R(q, \Omega)$

$$
\begin{aligned}
\frac{\mathrm{d} R(q, \Omega)}{\mathrm{d} \Omega} & =R(q, \Omega)[P(\Omega, \Omega)-R(\Omega, \Omega)] \\
& -P(\Omega, \Omega) \int_{q}^{\Omega} \mathrm{d} q^{\prime} R\left(q^{\prime}, \Omega\right) R\left(\frac{q \Omega}{q^{\prime}}, \Omega\right) \frac{\Omega}{q^{\prime}} \\
\frac{\mathrm{d} P(p, \Omega)}{\mathrm{d} \Omega} & =P(p, \Omega)[R(\Omega, \Omega)-P(\Omega, \Omega)] \\
& -R(\Omega, \Omega) \int_{p}^{\Omega} \mathrm{d} p^{\prime} P\left(p^{\prime}, \Omega\right) P\left(\frac{p \Omega}{p^{\prime}}, \Omega\right) \frac{\Omega}{q^{\prime}},
\end{aligned}
$$

3. Fixed-point solution at $\Omega=\Omega^{*} \rightarrow 0$

The asymmetric model, $\delta>0$

$$
P_{0}(p, \Omega) \approx \frac{1}{z \Omega}\left(\frac{\Omega}{p}\right)^{1-1 / z}, \quad \Omega<\Omega_{\xi} \sim \xi^{-z}
$$

z : dynamical exponent is the solution of:

$$
\left[\left(\frac{q}{p}\right)^{1 / z}\right]_{\mathrm{av}}=1
$$

At an energy-scale, $\Omega_{0} \ll \Omega_{\xi}$, typically

$$
\tilde{p} \sim \Omega_{0}, \quad \ln \tilde{q} \sim \Omega_{0}^{-1 / z}
$$

Renormalized model

- non-interacting effective particles of finite mass \leftrightarrow localized excitations
- unidirectional move with random speeds - identical distribution
- the stationary velocity is given by the smallest speed

Low energy excitations - EVS - Fréchet distribution

Numerical RG tests for random quantum systems

- Finite random quantum system of linear size L
- Numerical renormalization up to the last effective spin (spin singlet)
- Last effective gap, ϵ, is calculated
- Its distribution is plotted
- Gap exponent, ω, is measured from the tail of the distribution

$$
P_{L}(\epsilon)=L^{z} \widetilde{P}_{1}\left(\epsilon L^{z}\right) ? \rightarrow ? \sim L^{d} \epsilon^{\omega}
$$

- Dynamical exponent, z, is calculated from scaling collapse
- Localization of excitations is checked: $\omega+1=\frac{d}{z}$
- Comparison is made with the Fréchet distribution

Random quantum Potts chain

$$
H_{P}=-\sum_{i=1}^{L-1} \lambda_{i} \delta\left(s_{i}, s_{i+1}\right)-\sum_{i=1}^{L} \frac{h_{i}}{q} \sum_{k=1}^{q-1} M_{i}^{k}
$$

q-state spin variables: $\left|s_{i}\right\rangle=|1\rangle=|2\rangle=\ldots|q\rangle$

$$
L=2048, \text { uniform disorder: } h_{0}=3
$$

(EVS seems to work)

RTIM: ladder and 2d system

RTIM ladder, uniform disorder:
$h_{0}=2.5$
(EVS seems to work)

RTIM in 2d, uniform disorder: $h_{0}=9$. (EVS seems to work)

Random Heisenberg models

$$
H_{H}=\sum_{i, j} J_{i, j} t_{i} t_{j} \vec{S}_{i} \cdot \vec{S}_{j}
$$

\vec{S}_{i} : spin-1/2 variable, $t_{i}=0$ with probability, p, and $t_{i}=1$, otherwise.

chain with $-0.5<J_{i}<0.5$ (EVS does not work)

square lattice with Gaussian disorder of variance 1 (EVS seems to work)

diluted square lattice ($p=0.125$) with uniform AF disorder
(EVS does not work)

Random quantum systems

EVS probably works, if the RG has same type of (strong disorder) fixed point.

- Models with discrete symmetry (Ising, Potts, etc)
- similar decimation rules
- localized excitations
- EVS could work at any dimension
- Models with continuous symmetry (Heisenberg)
- for non-chain.like objects modified decimation rules
- large spin formation \rightarrow non-localized excitations
- EVS generally does not work for $d>1$

Conclusions

- Strong Griffiths singularities are due to rare region effects
- In systems with discrete symmetry the rare regions are localized
- Strong disorder RG provides low energy excitations, which are
- non-interacting \rightarrow independent
- identically distributed random variables
- the low-energy tail is algebraic

Low energy excitations - EVS - Fréchet distribution

