## Strong Griffiths singularities in random systems and their relation to extreme value statistics

Róbert Juhász Yu-cheng Lin Ferenc Iglói

ELTE, 1 March, 2006

## AGENDA

- Introduction rare region effects
- Griffiths singularities in random quantum systems
  - Random transverse Ising model with extreme disorder
  - Strong disorder RG method
  - Scaling results
  - Numerical tests
- Griffiths singularities in random stochastic systems
  - Partially asymmetric simple exclusion process with extreme disorder
  - Strong disorder RG and scaling results
  - Numerical tests
- Conclusion

#### **Rare region effects**

Randomly diluted classical Ising model





Rare region of size l - locally in the ferromagnetic phase density  $\sim (1-p)^{l^d}$ relaxation time  $\tau \sim \exp(Al^{d-1})$ autocorrelation:  $\ln G(t) \sim -(\ln t)^{d/(d-1)}$ magnetization:  $m(h) \sim \exp(-B/h)$ weak Griffiths singularities

#### Random transverse-field Ising model (RTIM)

$$H = -\sum_{i=1}^{L-1} \lambda_i \sigma_i^x \sigma_{i+1}^x - \sum_{i=1}^{L} h_i \sigma_i^z ,$$

 $\sigma_i^{x,z}$ : Pauli matrices

 $\dot{\lambda_i}$ : couplings,  $h_i$ : transverse fields, iid random numbers. control parameter

$$\delta = \frac{[\ln h]_{\mathrm{av}} - [\ln \lambda]_{\mathrm{av}}}{\operatorname{var}[\ln \lambda] + \operatorname{var}[\ln h]} \,.$$

 $T=0,\ \delta<0$ : ferromagnetic phase;  $\delta>0$ : paramagnetic phase.  $\delta=0$ : random quantum critical point time-scale is governed by the largest coupled region  $\tau\sim 1/\epsilon\sim L^z,\ z=z(\delta)$  dynamical exponent autocorrelation:  $G(t)\sim t^{-1/z}$  susceptibility:  $\chi\sim T^{-1+1/z}$ 

#### strong Griffiths singularities

## Partially asymmetric simple exclusion process (PASEP)

- N particles hop to neighboring empty sites of a 1d lattice of size L > N
- the hop rates could depend on
  - the given particle (particle-wise (pw) disorder)
  - or on the departure site (site-wise (sw) disorder)
- the hop rates for the *i*-the particle (site): forward  $p_i$ , backward  $q_i$

control parameter:

$$\delta_p = \frac{[\ln p]_{\mathsf{av}} - [\ln q]_{\mathsf{av}}}{\operatorname{var}[\ln p] + \operatorname{var}[\ln q]},$$

the particles move to the right (to the left) for  $\delta_p > 0$  ( $\delta_p < 0$ ). time-scale is governed by the largest barrier Stationary velocity:  $v \sim 1/\tau \sim L^{-z_p}$  $z_p = z_p(\delta_p)$ : dynamical exponent

#### strong Griffiths singularities

## Extreme value statistics (EVS)

- $y_1, y_2, \ldots, y_L$  (independent) random numbers
- distributed with (identical) parent distribution  $\pi(y)$
- question is the distribution of the largest (k-th largest) value:  $y_{max}$ .

For *iid* random numbers three basic universality classes, depending on  $\lim_{y\to\infty} \pi(y)$ .

- $\pi(y)$  decays faster than any power-law: Gumbel distribution.
- $\pi(y)$  decays as a power-law: Fréchet distribution.
- $\pi(y)$  has a power-law with an edge: Weibull distribution.

For non-*iid* random numbers no general results.

Strong Griffiths singularities are governed by rare, extreme regions.

The interacting many-particle systems have strong correlations.

Can the EVS still be of relevance?

#### Exact result: RTIM with extreme disorder

Bimodal distribution:  $h_i = 1$ ,  $\lambda_i = \begin{cases} \lambda & \text{with pr } c \\ \lambda^{-1} & \text{with pr } 1 - c \end{cases}$ extreme limit:  $c \ll 1$ ;  $\lambda \gg 1 \rightarrow \delta \sim (1 - 2c) \ln \lambda \gg 1$  paramagnetic phase.

Properties of a **rare region** of *n* strong bonds:

density of the cluster:  $\rho(n) = c^n$ excitation energy:  $\epsilon(n) \approx \lambda^{-n} \rightarrow n = -\frac{\ln \epsilon}{\ln \lambda}, \quad dn = -\frac{d\epsilon}{\epsilon \ln \lambda}$ distribution of the low-energy excitations:

$$\begin{split} P(\epsilon) \mathrm{d}\epsilon &= \rho(n) \mathrm{d}n \quad \rightarrow \boxed{P(\epsilon) \approx \frac{1}{\ln \lambda} \epsilon^{\omega}, \quad \epsilon \rightarrow 0}; \quad \omega = \frac{\ln(1/c)}{\ln \lambda} - 1 \\ \text{Typical size of the largest cluster: } n_1 \quad \rightarrow \quad L \sum_{n \geq n_1} \rho(n) = 1 \quad \rightarrow \quad n_1 \approx \frac{\ln L}{\ln(1/c)} \\ \text{smallest gap:} \quad \overline{\epsilon_1 \approx \lambda^{-n_1} \sim L^{-z}} \end{split}$$

with the dynamical exponent:  $z = \frac{\ln \lambda}{\ln(1/c)}$ , and  $\omega = \frac{1}{z} - 1$ .

9

### Distribution of the smallest gaps

 $P_L(\epsilon_1) = L^z \tilde{P}_1(\epsilon_1 L^z) \sim L \epsilon_1^{\omega}$ 

- localized excitations: the largest cluster can be at  $\sim L$  positions
- $\epsilon_1$  is the smallest gap out of  $\sim L$  independent rare regions,
- having identical parent distribution.

 $\tilde{P}_1(u)$ , is the standard Fréchet distribution

$$\tilde{P}_1(u) = \frac{1}{z} u^{1/z-1} \exp(-u^{1/z})$$

for the *k*-th smallest gap:

$$\tilde{P}_k(u_k) = \frac{1}{z} u_k^{k/z-1} \exp(-u_k^{1/z}), \quad u_k = u_0 L^z \epsilon_k$$

#### Numerical test

uniform distribution:  $\pi_{\lambda}(\lambda) = \begin{cases} 1 & \text{for } 0 < \lambda < 1 \\ 0 & \text{otherwise} \end{cases} \quad \pi_{h}(h) = \begin{cases} 1/h_{0} & \text{for } 0 < h < h_{0} \\ 0 & \text{otherwise} \end{cases}$ 

dynamical exponent  $z \rightarrow z \ln(1-z^{-2}) = -\ln h_0$ .



#### Exact result: **PASEP** with extreme disorder

Particle-wise bimodal disorder: black particles: a fraction of c,  $p_i = 1$ ,  $q_i = \lambda$ white particles: a fraction of 1 - c,  $p_i = 1$ ,  $q_i = \lambda^{-1}$ extreme limit:  $c \ll 1$ ;  $\lambda \gg 1 \rightarrow \delta \sim (1 - 2c) \ln \lambda \gg 1$  drift to the right. Properties of a **rare region** of a cluster of n black particles:

density of the cluster:  $\rho(n) = c^n$ 

speed of the cluster:  $v(n) \approx \lambda^{-n}$ 

distribution of the speed of clusters:

$$P(v)pprox rac{1}{\ln\lambda}v^{\omega}, \quad v
ightarrow 0$$
;  $\omega=rac{\ln(1/c)}{\ln\lambda}-1$ 

Equivalence with the RTIM as

$$\boxed{\epsilon(n) \leftrightarrow v(n)}$$
  
$$\epsilon_1 \leftrightarrow v_1 \equiv v_{stationary}$$

### Numerical test



pw uniform disorder:  $h_0 = 3$ .

13

Strong disorder renormalization

F.I., C. Monthus, Physics Reports **412**, 277-431, (2005) **1. PASEP Composite particle formation** 



Renormalization scheme for particle clusters. If  $q_2$  is the largest hopping rate, in a time-scale,  $\tau > 1/q_2$ , the two-particle cluster moves coherently and the composite particle is characterized by the effective hopping rates  $\tilde{q}$  and  $\tilde{p}$ , respectively.

- largest hop rate defines the energy scale:  $\Omega = q_2 \gg p_1, q_1, p_2$
- time scale:  $\tau = 1/\Omega$ , consider only  $t > \tau$ :

• 
$$\tilde{q} = q_1 imes rac{q_2}{q_2 + p_1} pprox q_1$$

• 
$$\tilde{p} = p_2 \times \frac{p_1}{q_2 + p_1} \approx \frac{p_1 p_2}{q_2}$$

• for  $\Omega = p_1 \gg p_2, q_1, p_2$  we have  $\left[ \tilde{p} \approx p_2, \ \tilde{q} \approx rac{q_1 q_2}{p_1} \right]$ 

#### Strong disorder RG approach of the random XX-chain

• Hamiltonian:

$$H_{XX} = -\sum_{i=1}^{2L} J_i \left( S_i^x S_{i+1}^x + S_i^y S_{i+1}^y \right)$$

- largest coupling defines the energy scale:  $\Omega = J_2 \gg J_1, J_3$
- two sites with  $J_2$  form an effective singlet are decimated out
- effective coupling between remaining sites:  $\tilde{J} \approx \frac{J_1 J_3}{J_2}$
- Correspondence with the PASEP:  $q_i \leftrightarrow J_{2i-1}$   $p_i \leftrightarrow J_{2i}$

# **2.** RG equations for the distribution functions: $P(p, \Omega), R(q, \Omega)$

$$\frac{\mathrm{d}R(q,\Omega)}{\mathrm{d}\Omega} = R(q,\Omega)[P(\Omega,\Omega) - R(\Omega,\Omega)] - P(\Omega,\Omega) \int_{q}^{\Omega} \mathrm{d}q' R(q',\Omega) R(\frac{q\Omega}{q'},\Omega) \frac{\Omega}{q'} \frac{\mathrm{d}P(p,\Omega)}{\mathrm{d}\Omega} = P(p,\Omega)[R(\Omega,\Omega) - P(\Omega,\Omega)] - R(\Omega,\Omega) \int_{p}^{\Omega} \mathrm{d}p' P(p',\Omega) P(\frac{p\Omega}{p'},\Omega) \frac{\Omega}{q'},$$

## 3. Fixed-point solution at $\Omega = \Omega^* \to 0$

The asymmetric model,  $\delta > 0$ 

$$P_0(p,\Omega) pprox rac{1}{z\Omega} \left(rac{\Omega}{p}
ight)^{1-1/z}, \quad \Omega < \Omega_{\xi} \sim \xi^{-z}$$

z: dynamical exponent is the solution of:

$$\left[ \left( \frac{q}{p} \right)^{1/z} \right]_{\rm av} = 1$$

At an energy-scale,  $\Omega_0 \ll \Omega_{\xi}$ , typically

$$ilde{p} \sim \Omega_0, \quad \ln ilde{q} \sim \Omega_0^{-1/z}$$

## **Renormalized model**

- non-interacting effective particles of finite mass ↔ localized excitations
- unidirectional move with random speeds identical distribution
- the stationary velocity is given by the smallest speed

# Low energy excitations - EVS - Fréchet distribution

### Numerical RG tests for random quantum systems

- Finite random quantum system of linear size L
- Numerical renormalization up to the last effective spin (spin singlet)
- Last effective gap,  $\epsilon$ , is calculated
- Its distribution is plotted
- Gap exponent,  $\omega$ , is measured from the tail of the distribution

$$P_L(\epsilon) = L^z \tilde{P}_1(\epsilon L^z) ? \rightarrow ? \sim L^d \epsilon^{\omega}$$

- Dynamical exponent, z, is calculated from scaling collapse
- Localization of excitations is checked:  $\omega + 1 = \frac{d}{z}$
- Comparison is made with the Fréchet distribution

# Random quantum Potts chain $H_P = -\sum_{i=1}^{L-1} \lambda_i \delta(s_i, s_{i+1}) - \sum_{i=1}^{L} \frac{h_i}{q} \sum_{k=1}^{q-1} M_i^k$

q-state spin variables:  $|s_i\rangle = |1\rangle = |2\rangle = \dots |q\rangle$ 



L = 2048, uniform disorder:  $h_0 = 3$ (EVS seems to work)

#### **RTIM:** ladder and 2*d* system



 $h_0 = 2.5$  (EVS seems to work)





### **Random Heisenberg models**

 $H_H = \sum_{i,j} J_{i,j} t_i t_j \vec{S}_i \cdot \vec{S}_j$ 

 $\vec{S}_i$ : spin-1/2 variable,  $t_i = 0$  with probability, p, and  $t_i = 1$ , otherwise.







chain with  $-0.5 < J_i < 0.5$ (EVS does not work)



diluted square lattice (p = 0.125) with uniform AF disorder (EVS does not work)

## Random quantum systems

EVS probably works, if the RG has same type of (strong disorder) fixed point.

- Models with discrete symmetry (Ising, Potts, etc)
  - similar decimation rules
  - localized excitations
  - EVS could work at any dimension
- Models with continuous symmetry (Heisenberg)
  - for non-chain.like objects modified decimation rules
  - large spin formation  $\rightarrow$  non-localized excitations
  - EVS generally does not work for d > 1

## Conclusions

- Strong Griffiths singularities are due to rare region effects
- In systems with discrete symmetry the rare regions are localized
- Strong disorder RG provides low energy excitations, which are
  - non-interacting  $\rightarrow$  independent
  - identically distributed random variables
  - the low-energy tail is algebraic

## Low energy excitations - EVS - Fréchet distribution