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Rare region effects

Randomly diluted classical Ising model

H=-J) KikjSiS; + h kiSi, P(k)=pdé(r)+ (1 —p)é(1l—k)
(i7) U

Paramagnetic

Griffiths
region

Ferromagnetic

A\ 4




2N R BN N R 2N X A
Voot ottde tlottd
t ottt it
ttt  tttttdiittt
ZERR t Wittt
Fote ottt td
t ottt ot

ttt bttt ttt ittt

Rare region of size [ - locally in the ferromagnetic phase
density ~ (1 —p)*
relaxation time 7 ~ exp(Al¢—1)
autocorrelation: In G(t) ~ —(Int)4/(d=1)
magnetization: m(h) ~ exp(—B/h)
weak Griffiths singularities



Random transverse-field Ising model (RTIM)

L—1 L
H = — Z Aiaix(fﬁ_l — Z h;o? |
1=1 1=1

o;””. Pauli matrices
A;. couplings, h;: transverse fields, 7:d random numbers.
control parameter

_[Inhlav — [In A]av
var[In \] + var[Inh]

T =0, 6 <0: ferromagnetic phase; 6 > 0: paramagnetic phase.
60 = 0: random quantum critical point
time-scale is governed by the largest coupled region
T~ 1/e~ L?* z= z(6) dynamical exponent
autocorrelation: G(t) ~ t~1/%
susceptibility: y ~ T-1t+1/2

strong Griffiths singularities



Partially asymmetric simple exclusion process (PASEP)
e N particles hop to neighboring empty sites of a 1d lattice of size L > N

e the hop rates could depend on
— the given particle (particle-wise (pw) disorder)

— or on the departure site (site-wise (sw) disorder)
e the hop rates for the i-the particle (site): forward p;, backward g;

control parameter:

. [In plav — [In q]av
var[inp] + var[ing] ’
the particles move to the right (to the left) for §, > 0 (d, < 0).
time-scale is governed by the largest barrier
Stationary velocity: v~ 1/7 ~ L™%
zp = 2p(0p): dynamical exponent

p

strong Griffiths singularities



Extreme value statistics (EVS)

e y1,Y2,...,yr (independent) random numbers

e distributed with (identical) parent distribution «(y)

e question is the distribution of the largest (k-th largest) value: ymaz.
For iid random numbers three basic universality classes, depending on limy_.. 7(y).

e w(y) decays faster than any power-law: Gumbel distribution.

e w(y) decays as a power-law: Fréchet distribution.

e w(y) has a power-law with an edge: Weibull distribution.

For non-wid random numbers no general results.



Strong Griffiths singularities are governed by rare,
extreme regions.

The interacting many-particle systems have strong
correlations.

Can the EVS still be of relevance?



Exact result: RTIM with extreme disorder

A with pr ¢

Bimodal distribution: h; =1, M\ = 1 :
A with pr 1-—c¢

extreme limit: c<1; A>1 — 6~ (1—2c)InX> 1 paramagnetic phase.

Properties of a rare region of n strong bonds:
density of the cluster: p(n) = "

i i . ~ \— N — _|ﬂ_e e
excitation energy: e(n) =~ A — n=—x, dn=--5

distribution of the low-energy excitations:

P(e)de = p(n)dn — |P(e) = ¢, e€— 0| w = N/ 4

€ In X

Typical size of the largest cluster: n1 — LZnanp(n) =1 — ni=

smallest gap: |e1~ A\™ ~ L7
with the dynamical exponent: z =

In
In(1/c)’

andwzé—l.

InL
In(1/c)




Distribution of the smallest gaps

Pr(e1) = L*P1(e1L?) ~ Le¥
e |ocalized excitations: the largest cluster can be at ~ L positions
e ¢; IS the smallest gap out of ~ L independent rare regions,

e having identical parent distribution.

Pi(u), is the standard Fréchet distribution

Pa(w) = Lul/ exp(—ull?)

for the k-th smallest gap:

Pi(ur) = 2uf " texp(—u}?),  wp = uoLiey
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Numerical test
uniform distribution:

(\) = 1 for O0< A1 (h) = 1/hg for 0O < h<ho
TARA) = 0 otherwise Tl = 0 otherwise

dynamical exponent z — zIn(1 —272) = —Inhg.

In[P(x)]

In[P(x)]
A

x=-In(g,L?)

RTIM first gap RTIM second gap
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Exact result: PASEP with extreme disorder

Particle-wise bimodal disorder:
black particles: a fraction of ¢, p;, =1, ¢ = A
white particles: a fraction of 1 —¢, p; =1, ¢ = X1

extreme limit: e 1; A>1 — 6§~ (1—-2¢)InX> 1 drift to the right.

Properties of a rare region of a cluster of n black particles:

density of the cluster: p(n) = "
speed of the cluster: v(n) ~ A™"

distribution of the speed of clusters:

P(v)%ﬁvw, v— 0 wZW—l

Equivalence with the RTIM as

e(n) < v(n)

€1 <> V1 = Ustationary
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In[P()]

Numerical test

x=-In[vN]

pw uniform disorder: hg = 3.

In[P()]

1 15 2 2.5 3 3.5 4
x=-In[vL"]

sw binary disorder: ¢ = 0.25, A =2

Zpw

Zsw — >
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Strong disorder renormalization

F.I., C. Monthus, Physics Reports 412, 277-431, (2005)
1. PASEP Composite particle formation

O = 0
D2

42 P2

q p

N N
O—@—0

Renormalization scheme for particle clusters. If ¢ is the largest hopping rate,
in a time-scale, = > 1/g», the two-particle cluster moves coherently and the
composite particle is characterized by the effective hopping rates ¢ and p,
respectively.
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largest hop rate defines the energy scale: 2 = g» > p1,q1, p2

time scale: 7 =1/, consider only t > 7:

q>

=01 Q+p1 ~ q1

~ y%i P1p2
= X ~

p p2 q>+Dp1 Q>

for Q = p1 > p2,q1,p2 We have |p =~ pa, §~ L2
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Strong disorder RG approach of the random XX-chain

e Hamiltonian:

Hyx = — Y o2y Ji (5852, + SYSY, )

largest coupling defines the energy scale: Q2 = J> > Ji1,J3

two sites with Jo form an effective singlet - are decimated out

J1J3

e effective coupling between remaining sites: J =~ g

Correspondence with the PASEP: q; < Joi—1  pi < Jo;
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2. RG equations for the distribution functions: P(p,2), R(q,2)

LS~ rg,2)(P(@,2) - R, )]
- re) [ ardorE 2?
q q q

WS~ po,2)(r@,2) - P©.2)
~ R(Q,9) / " ar P, PP )2,
p p q
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3. Fixed-point solution at 2 =0Q* — 0

The asymmetric model, § >0

1-1/z
P, D~ 5(2) , Q<Qe~e

z: dynamical exponent is the solution of:

®7, =

av
At an energy-scale, €20 K €2¢, typically

p~SQo, NG~
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Renormalized model
e non-interacting effective particles of finite mass « localized excitations
e unidirectional move with random speeds - identical distribution

e the stationary velocity is given by the smallest speed

Low energy excitations - EVS - Fréchet distribution
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Numerical RG tests for random quantum systems
Finite random quantum system of linear size L
Numerical renormalization up to the last effective spin (spin singlet)
Last effective gap, ¢, is calculated
Its distribution is plotted

Gap exponent, w, is measured from the tail of the distribution
Pr(€) = L?P1(eL?) ? =7 ~ L%¥

Dynamical exponent, z, is calculated from scaling collapse

Localization of excitations is checked: w4+ 1 = g

Comparison is made with the Fréchet distribution
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Random quantum Potts chain

q-state spin variables:

In[P(Inh)]

= — 2101 Nib(siysip1) — Doy Y0 M
s) = 1) =2) =..1a)
=2 -
2l 43
g=4 -
=8 -
4 | ;
E x|
DDD
6 | X KKy DkaD_D
,“ x** DD*D y
5 10 15 20 25 30

-Inh

L = 2048, uniform disorder: hg = 3

(EVS seems to work)
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RTIM: ladder and 2d system

! ! ! ! 0 T T T 1 T T
2k 10°
Y- ok B0t 4
Wl i w 4k £t 5 |
—? E .3—8 6 -4 -2 0 2 4 \6
E./ EI: -In(L%)
C -6F c -6 O L=32 A
£ = A L=64 |
o L=128
-8k -
-8
o [ A
s L s L O N L s 10— L . . 1l —l a1
0 10 20 30 40 50 0 5 10 15 20 25 30 35 40
-Ine -Ine
RTIM ladder, uniform disorder:
ho = 2.5 RTIM in 2d, uniform disorder: hg = 9.
(EVS seems to work) (EVS seems to work)
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Random Heisenberg models

Hy = Zz’,j Ji. -titjb_’} . ,S_"j

-
S; . spin-1/2 variable, t; = 0 with probability, p, and ¢; = 1, otherwise.
0 T T T T T T 0 0 T T T T
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- L =256 < c % LZ18
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- 2, )
-8 p,o° 1 1 -8 8 N : Q 1
10 15 20 2 30 35 40 0 0 10 20 30 40 50

Iatti ith G , diluted square lattice
>quare fattice With Latisstan — , — 0.125) with uniform AF
disorder of variance 1 disorder

(EVS does not work) (EVS seems to work) (EVS does not work)

chain with —0.5 < J; < 0.5
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Random quantum systems

EVS probably works, if the RG has same type of (strong disorder) fixed point.

e Models with discrete symmetry (Ising, Potts, etc)
— similar decimation rules
— localized excitations

— EVS could work at any dimension

e Models with continuous symmetry (Heisenberg)
— for non-chain.like objects modified decimation rules
— large spin formation — non-localized excitations

— EVS generally does not work for d > 1
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Conclusions

e Strong Griffiths singularities are due to rare region effects

e In systems with discrete symmetry the rare regions are localized

e Strong disorder RG provides low energy excitations, which are

non-interacting — independent
identically distributed random variables

the low-energy tail is algebraic

L ow

energy excitations - EVS - Fréchet distribution
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